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ABSTRACT
This paper proposes a novel blind compensation of sampling fre-
quency mismatch for asynchronous microphone array. Digital
signals simultaneously observed by different recording devices have
drift of the time differences between the observation channels be-
cause of the sampling frequency mismatch among the devices.
Based on the model that such the time difference is constant within
each time frame, but varies proportional to the time frame index, the
effect of the sampling frequency mismatch can be compensated in
the short-time Fourier transform domain by the linear phase shift.
By assuming the sources are motionless and stationary, a likelihood
of the sampling frequency mismatch is formulated. The maximum
likelihood estimation is obtained effectively by a golden section
search.

Index Terms— Asynchronous microphone array, sampling fre-
quency, maximum likelihood estimation, blind source separation

1. INTRODUCTION

Asynchronous microphone array is a concept of microphone array
signal processing where audio signals recorded by separated mul-
tiple devices are used as the multichannel signal for array signal
processing [1]. One typical application is speech enhancement of
audio signals recorded by multiple mobile recording devices. The
advantage of asynchronous microphone array is its freedom in the
choice of the recording devices for many-channel recording, and
it requires no large-scale recording devices such as special micro-
phones for microphone arrays or many-channel analog-to-digital
converters (ADCs). However, the asynchronous channels brings
many additional issues which are not treated conventionally in mi-
crophone array signal processing. For example, the array geometry
is naturally unknown [2, 3, 4, 5], the recording devices have differ-
ent unknown gains [6], each device starts recording independently
[4, 5], and the sampling frequencies are not common among the
observation channels [1, 7, 8, 9].

Among many issues of asynchronous microphone array de-
scribed above, one of the most important issues is the mismatch
of sampling frequencies. Sampling frequencies of ADCs have bias
of the order of 10 ppm (parts per million, 10−6) mainly caused by
individual variability of the quartz in their clock generators. Thus
mismatch of sampling frequencies is inevitable without synchro-
nization. The difference in the unit lengths of samples causes drift
of time difference among observed digital signals in different chan-
nels. Since most of array signal processing methods assume that
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locations of sound sources have unique time differences of arrival
(TDOAs) among observation channels, even a sample of change in
the TDOAs is considerably large for array signal processing. Thus
bias of the order of 10 ppm is significant for array signal processing.

In this paper we propose a blind compensation of sampling
frequency mismatches between channels. First, modeling the drift
within a frame to be constant time shift proportional to the time of
the frame as modeled similarly in [9], we compensate the sampling
frequency mismatch in the short-time Fourier transform (STFT)
domain by the linear phase shift. Second, assuming the sources
are motionless, we introduce a likelihood of sampling frequency
mismatch estimate. Since the drift of time differences appears as if
the sources are moving, we derive the likelihood function to evaluate
the spatial stationarity of the compensated observation. Although
the maximum likelihood estimation cannot be solved analytically,
the optimization is solved efficiently by combination of coarse
discretized search and fine golden section search employing the
experimentally found property that the likelihood function is usually
unimodal locally around the global maximum. The experimental
results show that the proposed method effectively recovers perfor-
mance of blind source separation (BSS) [10]. Note that we focus on
the compensation of the sampling frequency mismatch between two
channels, but it can be extended to arbitrary number of channels by
fixing one reference channel and fitting the others to the reference.

2. MODEL OF SAMPLING FREQUENCY MISMATCH

2.1. Time domain model of sampling frequency mismatch

Suppose sound pressures x1 (t) and x2 (t) on two microphones are
sampled by different ADCs as x1 (n) and x2 (n), where t denotes
the continuous time and n gives the discrete time. Also suppose the
sampling frequency of x1 (n) is fs, and that of x2 (n) is (1 + ϵ) fs

with a dimensionless number ϵ. This paper assumes that the ADCs
have the common nominal sampling frequencies and |ϵ| ≪ 1. Then
the relations between xi (n) and xi (t) for i = 1, 2 are given by

x1 (n) = x1

(
n

fs

)
, (1)

x2 (n) = x2

(
n

(1 + ϵ) fs
+ T21

)
, (2)

where the origin of the continuous time t is defined as the start-
ing time of the sampling of x1 (n), and T21 is the time when the
sampling of x2 (n) starts. The discrete times n1, n2 of these two
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sampled signals x1 (n1), x2 (n2) correspond to the same continu-
ous time t are given by

n2 = (1 + ϵ) (n1 − fsT21) . (3)

Note that hereafter we use the notation n1 and n2 to denote the pair
of the discrete time corresponding to the same time, and simply use
the notation n when we don’t need to consider such the correspon-
dence. Considering the integer-valued discrete time sample n1, the
corresponding discrete time n2 is generally non-integer. Thus, to
compensate the sampling of x2 (n) and obtain its modified version
x̂2 (n) synchronized with x1 (n) as

x̂2 (n) = x2

(
n

fs

)
, (4)

we need an infinite convolution of a sinc function assuming the infi-
nite samples of x2 (n) are available;

x̂2 (n) = x2 ((1 + ϵ) (n− fsT21))

=

∞∑
n′=−∞

sinc
(
(1 + ϵ) (n− fsT21)− n′)x2

(
n′) . (5)

This convolution is complicated even if the convolution is truncated
at a certain finite length, and we need some simpler approximation to
formulate effective estimation of the sampling frequency mismatch.

2.2. Modeling of sampling frequency mismatch in STFT do-
main

Since array signal processing is usually conducted in the STFT do-
main, we discuss an approximation of the sampling frequency mis-
match compensation in the STFT domain. Before proceeding to the
discussion of STFT, we analyze how the sampling mismatch appear
inside short-time frames. We consider the frame analysis of x1 (n1)
with the frame length M and the central sample of the frame is
denoted by m, and the range of n1 inside the frame is limited to
m − L/2 ≤ n1 ≤ m + L/2 − 1. From Eq. (3), the discrete times
n1 and n2 of the two observation channels satisfy the condition;

n2 = (1 + ϵ) (n1 −m) + (1 + ϵ) (m− fsT21)

⇔ (n2 −m) = (1 + ϵ) (n1 −m) + ϵm− (1 + ϵ) fsT21. (6)

Since |ϵ (n1 −m)| is typically close to zero, we regard it to be zero
and obtain the following approximation model.

(n2 −m) ≈ (n1 −m) + ϵm− (1 + ϵ) fsT21

= (n1 −m) + τ21 (m; ϵ) , (7)

where the drift inside a frame is ignored and the effect of the mis-
match is regarded as a steady time shift τ21 (m; ϵ) given by

τ21 (m; ϵ) = ϵ (m−M) , (8)

M =
1 + ϵ

ϵ
fsT21, (9)

where M denotes the discrete time when n1 and n2 coincide, i.e.,
when n1 = M , n2 = M . Hereafter we call M as offset origin.

If the length of the shift is much smaller than the frame size as

|τ21 (m; ϵ)| = |ϵ (m−M)| ≪ L, (10)

for m of all the frames to be analyzed, the compensation of the time
shift τ21 (m; ϵ) can be approximated well as the time shift inside

the frame. The simplest approximation to compensate for the non-
integral time shift τ21 (m; ϵ) is to filter the linear phase in the STFT
domain. First we apply analogous frame analyses to xi (n) and ob-
tain the STFT-domain signal Xi (k,m) for i = 1, 2 as

Xi (k,m) =

L−1∑
l=0

w (l)xi

(
l +m− L

2

)
exp

(
−2πȷkl

L

)
, (11)

where w (l) is the window function and k = −L/2 + 1, . . . , L/2
denotes the discrete frequency index. Compensation for the effect
of the time shift τ (m; ϵ) in X2 (k,m) to obtain the approximation
X̂2 (k,m; ϵ) with the synchronization to X1 (k,m) is given by

X̂2 (k,m; ϵ) = X2 (k,m) exp

(
2πȷkτ21 (k,m)

L

)
. (12)

This STFT-domain approximation is advantageous in its sim-
ple operation. In the following section we discuss an iterative op-
timization of the sampling frequency mismatch ϵ in the STFT do-
main based on this model. The compensation of Eq. (12) does not
require the repetition of the frame and STFT analysis in each itera-
tion. However, the linear phase shift in the STFT domain is just an
approximation of the time shift in the time domain, and the approx-
imation error is large when the condition in Eq. (10) is not satisfied.
To satisfy this condition, both |m−M | and |ϵm| have to be small.
The former can be satisfied to some extent by the correlation anal-
ysis in the following section, but the latter cannot be solved when
the absolute value |ϵ| of the sampling frequency mismatch is large
and the length of the observed signal is long. We do not focus on
the treatment of such cases in this paper, but in such cases, the frame
analysis of x2 (n) should not be analogous to that of x1 (n) as in
Eq. (11), but the central samples of the frames should be modified
taking the effect of the time shift τ (m; ϵ) into account.

3. MAXIMUM LIKELIHOOD ESTIMATION OF
SAMPLING FREQUENCY MISMATCH ASSUMING

SPATIAL STATIONARITY

3.1. Rough compensation of whole-sample offset

Blind identification of the recording time offset T21 in Eq. (2) is not
easy only with the observed signals x1 (n) and x2 (n). However, ac-
curate compensation of T21 is unnecessary and small constant time
rags among channels is accepted in some classes of array signal pro-
cessing, such as BSS [10] and maximum signal-to-noise beamformer
[11]. Thus we compensate for the recording time offset T21 roughly.

Usually the sound pressures x1 (t) and x2 (t) at the microphones
are highly correlated. Also we are assuming that the sampling fre-
quency mismatch is small and |ϵ| ≪ 1. Thus the observed signals
x1 (n) for n = 0, . . . , N1−1 and x2 (n) for n = 0, . . . , N2−1 have
high correlation even without the compensation of the sampling fre-
quency mismatch. Thus we find the whole-sample offset δ21 given
as delay in x2 (n2) to maximize the correlation as

δ21 = argmax
−N2<δ<N1

min(N1,N2+δ)−1∑
n=max(0,δ)

x1 (n)x2 (n− δ) , (13)

and to compensate the whole-sample offset δ21, we give delay to
x2 (n) as

x2 (n)← x2 (n− δ21) . (14)
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Also, the offset origin in Eq. (9) must be in the middle of the overlap
of x1 (n) and x2 (n− δ21). Thus we give the following estimate of
M :

M ←
⌊
min (N1 − δ21, N2)−max (0, δ21)− 1

2

⌋
, (15)

where ⌊·⌋ denotes rounding down. With these whole-sample offset
compensation and the offset origin estimation, the term |m−M | in
Eq. (10) is made as small as possible.

3.2. Likelihood to evaluate estimation of sampling frequency
mismatch assuming spatial stationarity

The drift caused by the sampling frequency mismatch makes the
TDOAs of each sound source change slowly according to the pro-
ceed of the time. Thus if the movements of sources are not large, the
compensation of the sampling frequency mismatch can be evaluated
with how static the TDOAs are. Also by assuming that the sources
are stationary, spatial stationarity can be the measure of the sam-
pling frequency mismatch. In this section we derive a likelihood of
the sampling frequency mismatch according to these assumptions.

We assume all the sources do not move and their amplitudes
are considered to be stationary on a long-term basis. We also as-
sume that in the STFT domain the amplitudes follow the zero-mean
normal distributions. Under these assumptions, the compensated ob-
served signal X̂ (k,m; ϵ) in the vector notation, given by

X̂ (k,m; ϵ) =
[
X1 (k,m) , X̂2 (k,m; ϵ)

]T
, (16)

is regarded to be stationary and follow the zero-mean multivariate
normal distribution if the sampling frequency mismatch ϵ is esti-
mated accurately and made stationary. Thus accurate estimation of ϵ
tends to maximize the following log likelihood function J (V, ϵ) to
evaluate the fit with the zero-mean multivariate normal distribution:

J (V, ϵ) =
∑
k,m

(
− log π2 − log detV (k)

− X̂ (k,m; ϵ)H V (k)−1 X̂ (k,m; ϵ)
)
, (17)

where V denotes the group of all the covariance matrices V (k), i.e.,
{V (k) |k = −L/2 + 1, . . . , L/2}, which is another parameter to
be optimized in the maximum likelihood estimation. The covariance
matrix V (k) is given by the following sample estimate:

V (k)← 1

|∀m|
∑
∀m

X̂ (k,m; ϵ) X̂ (k,m; ϵ)H , (18)

where |∀m| denotes the number of the frames. By omitting the con-
stants, the simplified version J (ϵ) of the log likelihood function
J (V, ϵ) is given by

J (ϵ) = −
∑
k

log det
∑
∀m

X̂ (k,m; ϵ) X̂ (k,m; ϵ)H . (19)

Since the estimate of ϵ to maximize the likelihood cannot be obtained
analytically, its efficient search is described in the following.

3.3. Efficient optimization of maximum likelihood estimate by
golden section search

Since the parameter to be optimized in the maximum likelihood es-
timation is only the sampling frequency mismatch ϵ, we can use the
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Fig. 1. An examples of the log likelihood function J (ϵ). Local
concavity around the global maximum can be seen.

golden section search, a representative line search method. It finds
a minimum or maximum of a unimodal function by reducing the
search range iteratively. As an example shown in Fig. 1, usually the
log likelihood function J (ϵ) given by Eqs. (16), (19) is usually uni-
modal locally around the global maximum. Thus after specifying the
unimodal range including the global maximum, the golden section
search can be utilized.

To find the unimodal range around the maximum, we discretize
ϵ roughly and select the discretized value to maximize the log like-
lihood function J (ϵ). Suppose we discretize ϵ into D samples ϵd
uniformly in the range of [−E,E] as

ϵd = −E +
2dE

D − 1
, d = 0, 1, . . . , D − 1. (20)

Then we compare all the values of J (ϵi) to find the maximum as

d∗ = argmax
d=0,...,D−1

J (ϵd) . (21)

The range parameter E can be decided easily by considering the pos-
sible range of ϵ. Since the sampling frequency mismatch normally
takes the value in the order of 10−5, E can be set around 10−4 or
larger. Appropriate setting of D depends on the range parameter E,
and 2E/ (D − 1) < 10−4 must be satisfied according to the curve
in Fig. 1.

After the search of the discretized values and obtain the rough
estimate ϵd∗ , the golden section search is applied to reduce the
search range. We show the algorithm in Table 1. The initial search
range is determined by [ϵd∗−1, ϵd∗+1], and the iteration continues
until the range shrinks to the desired resolution ρ (> 0).

4. EXPERIMENTAL EVALUATION

To confirm the effectiveness of the proposed blind sampling fre-
quency mismatch compensation, we gave artificial sampling fre-
quency mismatch to observation of two speakers’ speech with two
microphones, and evaluated the accuracy of the sampling frequency
mismatch compensation and its contribution to BSS.

4.1. Experimental conditions

The observed signals are made by convolution of measured impulse
responses and speech signals, which are made by concatenation of
word utterances chosen from ATR Japanese speech database [12].
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Table 1. The algorithm to search the maximum of J (ϵ)
Definition and initialization:

φ =
√

5−1
2

Set a← ϵd∗−1, b← ϵd∗+1

Step 1:
Set p← b− φ (b− a), q ← a+ φ (b− a)
Calculate J (p) and J (q) according to Eqs. (16), (19)

Step 2:
If J (p) ≤ J (q)

Set a← p, p← q, q ← a+ φ (b− a)
Else

Set b← q, q ← p, p← b− φ (b− a)
End if

Step 3:
If b− a > ρ

Go back to Step 1
Else

Obtain the result ϵ← a+b
2

Terminate the algorithm
End if

Table 2. Experimental conditions
Signal length 3, 5, 10, 20, 30 seconds
Reverberation time T60 of 130 ms
Frame length L 4,096 samples
Frame shift M 2,048 samples
Source distance 1.5 m
Source directions [-50◦, 30◦], [-60◦, -10◦]
Microphone spacing 2 cm
Discretization search range E 5× 10−4

discretization division D 10
Golden section search resolution ρ 10−9

We evaluated all the 12 combinations of two speakers from two
male and two female speakers. The original sampling frequency of
the observation is 16,000 kHz, and to one channel we gave mod-
ifications of sampling frequency of ±0.5, ±1, ±1.5 Hz. Those
correspond to the sampling frequency mismatch of ±31.25, ±62.5,
±93.75 ppm, which are realistic as practical bias of sampling fre-
quencies. To generate the artificial sampling frequency mismatch,
we used resampling with the polyphase filters of 100 taps. We used
auxiliary-function-based independent vector analysis [13] to conduct
BSS. Other conditions are listed in Table 2.

4.2. Accuracy of sampling frequency mismatch estimation

The root mean squared errors (RMSEs) of the estimation of sam-
pling frequency mismatches for different signal lengths are listed in
Table 3. We can see that our estimation algorithm works appropri-
ately even with short observed signals, and the accuracy improves
according to the increase of the length of the observed signals.

4.3. Contribution to BSS

We compared the separation performances of different conditions
of sampling frequency mismatch compensation to evaluate the con-
tribution of the proposed method to recover the performance of

Table 3. Estimation errors for sampling frequency mismatch
Signal length [s] 3 5 10 20 30
RMSE [ppm] 2.2 1.4 0.43 0.19 0.086
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Fig. 2. Signal-to-distortion ratios (SDRs) of BSS performances for
different signal conditions. No mismatch is the observation without
sampling frequency mismatch. Unprocessed shows the observation
with the sampling frequency mismatch not compensated. Phase shift
with true ϵ shows the sampling frequency mismatch compensation
by the linear phase shift with the true sampling frequency mismatch
ϵ given manually. Proposed shows the proposed blind sampling fre-
quency mismatch compensation by the linear phase shift with the
maximum likelihood estimate.

BSS. We evaluated the source separation performance with signal-
to-distortion ratio (SDR) [14] of the first channel as shown in Fig. 2.
Since the SDRs of the unprocessed signal is very low, we can
see that BSS is hard with the sampling frequency mismatches of
these conditions, and the compensation of the sampling frequency
mismatches is necessary. The result of the linear phase shift with
manually-given true sampling frequency mismatch is only 2 dB
lower than that without the sampling frequency mismatch. Thus
we can say that the effect of the error of the linear phase shift on
BSS is small. The blind compensation by the proposed method has
similarly high SDR to the manual compensation, and the estimation
error is not significant for BSS. Therefore it is confirmed that the
proposed method can effectively recover the degradation of BSS
caused by sampling frequency mismatch.

5. CONCLUSIONS

In this paper we proposed a novel blind compensation of sampling
frequency mismatch between observation channels of asynchronous
microphone array. We introduced an approximation model that the
drift caused by the sampling frequency mismatch is regarded as a
static time shift proportional to the sampling frequency mismatch.
According to this model, we proposed the sampling frequency
mismatch compensation in the STFT domain as the linear phase
shift. Also we proposed the blind estimation of optimal linear
phase shift. Assuming the sources are spatially stationary, we in-
troduced a probabilistic model of the compensated STFT signals
to follow the stationary zero-mean multivariate normal distribution.
The maximum likelihood estimation of the phase shift is efficiently
solved by golden section search. By evaluating BSS of the compen-
sated observation, we confirmed that the maximum likelihood linear
phase shift effectively recovers the degradation of source separation
performance caused by sampling frequency mismatch.
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