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ABSTRACT

A scenario with multiple talkers and additive background noise is

considered, where some talkers are active simultaneously and the

activity of the talkers changes with time. We propose an MMSE-

based method to blindly extract any talker using bin-wise position

estimates obtained from distributed microphone arrays. In order to

distinguish between different talkers, the position estimates are clus-

tered using the expectation maximization algorithm. The resulting

posterior probabilities allow to estimate the PSD matrices of the

talkers and compute an MMSE-optimal linear filter for extracting

each talker. We evaluate the performance of the proposed method

in terms of noise and interference reduction and distortion of the de-

sired speech signal at the output of a multichannel Wiener filter.

Index Terms— speech separation, PSD matrix estimation, dis-

tributed arrays, expectation maximization

1. INTRODUCTION

Most of the recently proposed approaches for source extraction in

multi-talker scenarios rely on the sparsity of speech signals in the

time-frequency (TF) domain [1]. Under the sparsity assumption,

each TF bin can be associated with a single dominant source. This

information can e.g. be used to compute a TF mask [2–4], or to es-

timate second order statistics of the sources, required for minimum

mean-squared error (MMSE)-optimal linear filters [5–7].

Recently, several approaches for dominant source detection

based on the expectation maximization (EM) algorithm have been

proposed [2–7]. For instance, clustering of observation vectors in

the signal domain has been proposed in [4,6,7], whereas the authors

in [3] use inter-aural parameters extracted from the microphone

signals. In addition, spectral features [5] or temporal correlation

information [8] can be included to improve the clustering perfor-

mance. Commonly, the EM-based approaches do not consider back-

ground noise, which can degrade clustering performance, and hence

the subsequent source extraction. EM-based approaches aiming at

joint source separation and noise reduction were recently developed

in [5, 6]. The noise was also considered in [2], by including the

noise signal in the likelihood function [9]. Nevertheless, the latter

approach does not aim at noise reduction.

In this paper, we propose a source extraction method using EM-

based clustering of position estimates obtained from distributed mi-

crophone arrays. The information about the dominant source for

each TF-bin is used to estimate the power spectral density (PSD)

matrices required for MMSE-based filters, such as the multichannel
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Wiener filter (MWF) [10]. The position estimates for each TF bin

are obtained by triangulation of direction-of-arrival (DOA) estimates

from at least two microphone arrays. In contrast to the approaches

in [4–7] where clustering is done per frequency bin, we apply full-

band clustering, as in [2, 3, 16]. Similar framework that uses as a

feature the signal vector at one array was proposed in [5, 7]. In this

work, we employ distributed arrays and TF bin-wise position esti-

mates as features. The position has lower dimension than the signal

vector, resulting in a low computational complexity and fast conver-

gence of the EM algorithm. Moreover, in contrast to [5,7], the noisy

observations are removed from the EM by using a direct-to-diffuse

ratio (DDR)-based multichannel speech presence probability (SPP)

proposed by the present authors in [12]. The noise PSD matrix re-

quired for the MMSE-based filtering is estimated using this SPP.

The paper is organized as follows: in Section 2 the problem is

formulated. Section 3 provides a brief overview of SPP-based noise

PSD matrix estimation. The main contribution of the paper is de-

scribed in Section 4, where the PSD matrices of the talkers are com-

puted using position-based EM clustering. In Section 5, the perfor-

mance of the algorithm is evaluated. Section 6 concludes the paper.

2. PROBLEM FORMULATION

Consider a scenario where M microphones from two or more dis-

tributed arrays capture an additive mixture of J talkers and back-

ground noise. In this work, we assume that the number of talkers J

is known. The signal at the m-th microphone is given in the short-

time Fourier transform (STFT) domain as follows

Ym(n, k) =
J∑

j=1

X
(j)
m (n, k) + Vm(n, k), (1)

where X
(j)
m , for j = 1, 2 . . . , J , and Vm denote the complex spectral

coefficients of the different talkers and the background noise, respec-

tively, and n and k are the time and frequency indices, respectively.

For brevity, we omit the time and frequency indices in the following,

wherever possible. The microphone signals are written in vector no-

tation as y(n) = [Y1(n) . . . YM (n)]T and the PSD matrix of y(n)
is defined as Φy(n) = E

[
y(n)yH(n)

]
, where (·)H denotes the

conjugate transpose of a vector or a matrix. The vectors x(j) and v

and the matrices Φ
(j)
x and Φv are defined similarly. The different

speech signals and the noise are modelled as mutually uncorrelated,

zero-mean random processes, such that

Φy(n) =

J∑

j=1

Φ
(j)
x (n) +Φv(n). (2)

In order to describe the activity of the different talkers in every
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TF bin, the following hypotheses are introduced

Hv : y(n) = v(n), indicating speech absence (3a)

Hx : indicating speech presence,. (3b)

Hj
x : indicating that the j-th source is dominant, i.e (3c)

y(n) ≈ x
(j)(n) + v(n).

Assuming sparsity of speech in the STFT domain [1] and mildly

reverberant environment, it holds that whenever Hx is true, exactly

one of the J hypotheses in (3c) is also true. In other words, most of

the energy contribution during speech corresponds to one talker.

If a desired talker is denoted by an index d ∈ {1, 2, . . . , J},

the goal is to estimate the signal X
(d)
m . In order to achieve this by a

linear MMSE-optimum spatial filter, the PSD matrices of the noise

and the different talkers are required.

3. SPP-BASED NOISE PSD MATRIX ESTIMATION

State-of-the-art multichannel noise PSD estimation methods employ

a recursive update based on a SPP [11]. Let q(n) = p[Hv(n)] de-

note the a priori speech absence probability (SAP) and

ξ(n) = tr{Φ−1
v (n)Φx(n)}, (4)

β(n) = y
H(n)Φ−1

v (n)Φx(n)Φ
−1
v (n)y(n), (5)

where tr{·} denotes the trace operator. If the spectral coefficients of

the speech and the noise signals are modelled as complex Gaussian

vectors [13], the multichannel SPP is given by

p[Hx |y(n)] =

{
1 +

q(n)

1− q(n)
[1 + ξ(n)] e

−
β(n)

1+ξ(n)

}−1

, (6)

where Φx = Φy − Φv. In this paper, we use the direct-to-diffuse

ratio-based a priori SAP q proposed by the present authors in [12].

In this manner, the speech signals that are coherent across the arrays

are detected and do not leak into the noise PSD matrix estimate.

The recursive update is obtained as a weighted sum of the noisy

spectral power values from the current frame and an estimate of the

noise PSD from the previous frame [14, 15] as follows

Φ̂v(n) = (1− p[Hx |y])
(
αv Φ̂v(n− 1) + (1− αv)yy

H
)

+ p[Hx |y] Φ̂v(n− 1), (7)

where Φ̂v is the estimated noise PSD matrix and 0 ≤ αv < 1 is a

chosen smoothing constant. The SPP in (6) is computed using the

noise PSD matrix from the previous frame, followed by an update of

the current PSD matrix, as given by (7).

4. SOURCE EXTRACTION

In order to estimate the PSD matrix of each talker, the dominant

talker in each TF bin where speech is present needs to be identified.

We propose a method that employs EM-based clustering of bin-wise

position estimates. Similarly as in [2, 3, 16], the clustering is per-

formed in a fullband manner, such that the training set for the EM

algorithm consists of position estimates collected over certain time

interval for all frequency bins.

4.1. Source PSD matrix estimation

Let p[Hj
x |y(n)] denote the posterior probability that the j-th source

is dominant. Moreover, let the PSD matrix Φ
(j)
x+v

(n) be defined as

Φ
(j)
x+v

(n) = Φ
(j)
x (n) +Φv(n). (8)

Following the recursive update given by (7), the PSD matrix Φ
(j)
x of

the j-th talker can be estimated in two steps as follows

1. Recursively estimate Φ
(j)
x+v

(n) according to

Φ̂
(j)
x+v

(n) = p[Hj
x |y(n)]

[
αx Φ̂

(j)
x+v

(n− 1) + (1− αx)yy
H
]

+
(
1− p[Hj

x |y(n)]
)

Φ̂
(j)
x+v

(n− 1) (9)

where 0 < αx < 1 is a chosen smoothing constant;

2. Subtract the noise PSD matrix estimate Φ̂v(n) [see Section 3]:

Φ̂
(j)
x (n) = Φ̂

(j)
x+v

(n)− Φ̂v(n). (10)

In order to realize the recursive update (9) for each talker j, the

bin-wise posterior probabilities p[Hj
x |y] are required.

4.2. Estimation of posterior probabilities

The posterior probability p[Hj
x |y] can be expressed as follows

p[Hj
x |y] = p[Hj

x |y,Hx] · p[Hx |y]. (11)

The second factor represents the SPP described in Section 3, while

the first factor allows to distinguish the different talkers. We propose

the following position-based approximation for every TF-bin

p[Hj
x |y,Hx] ≈ p[Hj

x | Θ̂,Hx], (12)

where the position Θ̂ is computed by triangulating DOA estimates

from e.g., two distributed arrays. The distribution of Θ̂ when speech

is present, is modelled by a Gaussian mixture (GM) [9], i.e.,

p[Θ̂ |Hx] =
J∑

j=1

πj N
(
Θ̂;µj ,Σj

)
(13)

where N
(
Θ̂;µj ,Σj

)
denotes a Gaussian distribution with mean

µj and covariance matrix Σj and πj are the mixing coefficients.

Note that the goal is to model the position distribution only during

speech activity. Therefore, the EM training set comprises only TF

bins where the SPP is above a threshold pmin. Existing methods that

detect noisy observations include VAD as done in [17], or using a

”garbage source” component as proposed by Mandel et al. [3].

Given a training set of N observations D = {Θ̂1, . . . Θ̂N}, the

GM parameters P = {πj ,µj ,Σj , . . .} are found by maximizing

the weighted log likelihood

ln p(D |P) =
N∑

n=1

w(Θ̂n) ln

J∑

j=1

πj N
(
Θ̂n;µj ,Σj

)
, (14)

where the power-based weighting function is computed as

w(Θ̂n) =
tr[y(n)yH(n)]

∑N

i=1 tr[y(i)y
H(i)]

. (15)

In the E-step of the algorithm, the posterior probabilities are com-

puted using the current model parameters according to

p[Hj
x | Θ̂,Hx] =

πj N
(
Θ̂;µj ,Σj

)

∑J

i=1 πi N
(
Θ̂;µi,Σi

) , (16)

whereas in the M-step the mixture parameters are updated as follows

µj ←−

∑N

n=1 p[Hj
x | Θ̂n] · w(Θ̂n)Θ̂n

∑N

n=1 p[Hj
x | Θ̂n] · w(Θ̂n)

(17)

Σj ←−

∑N

n=1 p[Hj
x | Θ̂n] · w(Θ̂n)(Θ̂n − µj)(Θ̂n − µj)

T

∑N

n=1 p[Hj
x | Θ̂n] · w(Θ̂n)

(18)
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Fig. 1. Block diagram of the proposed framework

πj ←−
1

N

N∑

n=1

w(Θ̂n) p[H
j
x | Θ̂n]. (19)

After computing the GMM parameters in the training step, the pos-

terior probabilities can be computed for unseen data using (16), as-

suming that the geometry of the scenario is fixed. The proposed

position-based source extraction framework is illustrated in Fig. 1.

4.3. Source extraction

Once the PSD matrices are computed, the d-th source, d ∈ {1, . . . , J}
at the m-th microphone can be extracted by a MWF according to

X̂
(d)
m (n) = h

H
m,d(n) y(n). (20)

The MWF filter coefficients hm,d are given by

hm,d(n) =
Φ−1

u (n)Φ
(d)
x (n)

1 + tr{Φ−1
u (n)Φ

(d)
x (n)}

emd
, (21)

where Φu represents the noise-and-interference PSD matrix and

emd
= [0 . . . 0︸ ︷︷ ︸

md−1

1 0 . . . 0︸ ︷︷ ︸
M−md

]T (22)

where md denotes the reference microphone for extracting the de-

sired source d. The reference microphone was computed using

md = min
j
‖µd − rj‖, (23)

where µd is the mean of the Gaussian distribution corresponding to

source d, and rj is the position of the j-th microphone. An estimate

of the noise-and-interference PSD matrix Φu is given by

Φ̂u(n) = Φ̂v(n) +
∑

j 6=d

Φ̂
(j)
x (n), (24)

5. PERFORMANCE EVALUATION

To evaluate the algorithm, microphone signals were simulated as a

sum of speech signals with approximately equal power, convolved

with simulated room impulse responses [18], a diffuse babble noise

signal [19] with a segmental speech-to-noise ratio of 22 dB, and un-

correlated sensor noise with a segmental speech-to-noise ratio of 50
dB. The reverberation time was T60 = 250 ms.

The sampling frequency was 16 kHz and the STFT frame length

L = 1024 samples, with 50% overlap. For the position estimation,

two uniform circular arrays were used with three omnidirectional

microphones, a diameter 2.5 cm and an inter-array spacing of 1.5 m.

The DOA was computed for each array using instantaneous observa-

tion vectors, as proposed in [20], and the position was computed by

a triangulation of the DOA vectors. Note that for the given diameter,

the DOA estimates over the full frequency range are not affected by

spatial aliasing. In addition to removing positions obtained from the

TF bins where the SPP is below pmin, positions within a radius of

20 cm around the microphone array centres are likely to correspond

to noise-only frames [21] and were therefore discarded from the EM

training set.

(a) Training during single-talk (b) Training during triple-talk

Fig. 2. Output of the EM algorithm (3 iterations). The actual source

positions are denoted by white squares. The array location is marked

by a plus symbol. The interior of each ellipse contains 85% proba-

bility mass of the respective Gaussian.

The averaging constants used in (7) and (9) were chosen as αv =
0.9 and αx = 0.9. The training sets comprised position estimates

with SPP of at least pmin = 0.7.

5.1. Performance measures

We denote the input fullband segmental signal-to-noise ratio (SNR),

signal-to-interference ratio (SIR) and signal-to-noise-and-interference

ratio (SINR) by Si,v , Si,b and Si,u respectively, and the correspond-

ing output values by So,v, So,b and So,u [10]. The time-domain

speech interference signal at microphone m is denoted by bm(t).
The output of the MWFs was assessed in terms of

1. Segmental SNR improvement So,v − Si,v .

2. Segmental SIR improvement So,x − Si,x.

3. Segmental speech distortion index νsd, as defined in [10].

4. Segment-wise interference reduction (SegIR).

5. PESQ score improvement [22], denoted by ∆-PESQ.

The segmental measures were computed by averaging over non-

overlapping frames of 20 ms where only frames with input SIR or

SNR between -25 dB and 40 dB were considered. The SegIR for the

i-th segment at microphone m was computed as

SegIR(i) =

∑
t
b2m(t) · wi(t)

∑
t b̂

2
m(t) · wi(t)

, (25)

where b̂m is the residual interference and wi is a rectangular win-

dow equal to one during segment i and zero elsewhere. ∆-PESQ

represents the difference of the PESQ scores of the inverse STFT of

X̂
(d)
m (n, k) and the inverse STFT of the mixture Ym(n, k).

5.2. Results

To demonstrate the outcome of the EM-based position clustering, the

output after 3 iterations is shown in Fig. 2, for single-talk and triple-

talk training. The training in both cases was performed using the

position estimates over 4.5 s. Notably, even when training is done

during constant triple-talk, the estimated model accurately reflects

the distribution of the sources.

The extracted signals at the output of the MWFs were evaluated

in two scenarios: a constant triple-talk scenario where 3 talkers are

simultaneously active, and a more realistic meeting scenario where

triple-talk is present only during short periods. The GM parame-

ters estimated over 4.5 s long training segments are used to compute

the posterior probabilities during the whole evaluated segments, as

described by (11), (12) and (16). The mixtures, the original source

signals and the extracted signals for are illustrated in Fig. 3, where

in both cases the desired sources are successfully extracted.
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Fig. 3. Mixture, reference signals and extracted signals. Left: constant triple-talk scenario. Right: mainly single-talk scenario. The corre-

sponding audio files are available at http://home.tiscali.nl/ehabets/publications/Taseska2013.html.

The performance of the proposed framework is compared to the

performance when the dominant source is known a priori, such that

ideal binary masks (IBM) [1] are used in (9) instead of the position-

based posterior probabilities (PPP) p[Hj | Θ̂]. The results are given

in Tables 1 and 2. In the mostly single-talk scenario (Table 2), we

computed the segmental interference reduction (Fig. 4), instead of

the segmental SIR improvement. Note that in terms of all measures,

the performance when using the PPP approaches the performance

when using IBM. This indicates that the position-based estimation

PSD matrix estimation is quite accurate, as corroborated by the good

interference reduction shown in Fig. 4, even during a segment with a

triple-talk. It should be mentioned that the interference reduction can

be further improved by e.g. incorporating the posterior probabilities

in a parametric multichannel Wiener filter.

6. CONCLUSIONS

A MMSE-based framework for source extraction using distributed

arrays was proposed. The SPP and the posterior probabilities ob-

tained by an EM-based position clustering were used to estimate

the PSD matrices of the different talkers and the background noise.

Eventually, each talker was extracted by a MWF. It was shown that

even during triple-talk, the EM algorithm converges with only a few

iterations to the desired solution and that good interference reduc-

tion is achieved at the cost of low speech distortion. In future work,

the performance will be evaluated in more reverberant environments,

and with different spatial filters other than the MWF. Moreover, an

online implementation of the EM algorithm is to be considered.

S
eg

IR
(d

B
)

E
[ b2 m

w
2 i

]
(d

B
)

time (s)

Fig. 4. Segmental interference reduction (dashed line), source 2 is

desired. The interference power is shown on the right vertical axis

(solid line).

Source 1 Source 2 Source 3

IBM PPP IBM PPP IBM PPP

Si,u -0.4 -0.4 1 1 -4 -4

So,x − Si,x 11.8 10.5 10.2 9.6 13.1 12

So,v − Si,v 3.5 3 3.1 2.6 2.9 2.7

∆-PESQ 0.97 0.8 0.88 0.75 1.06 0.95

νsd 0.05 0.09 0.07 0.13 0.12 0.16

Table 1. Performance evaluation, triple-talk scenario.

Source 1 Source 2 Source 3

IBM PPP IBM PPP IBM PPP

So,v − Si,v 3.5 3.2 2.6 2.6 3 3.2

νsd 0.04 0.05 0.04 0.06 0.06 0.06

Table 2. Performance evaluation, mainly single-talk scenario.

667



7. REFERENCES
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