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ABSTRACT

Most beamformers used for noise reduction rely on the accurate esti-
mation of the second-order statistics of the noise, and in some cases,
of the desired signal. Speech presence probability (SPP) based statis-
tics estimators seek to update the estimates only when speech is ab-
sent/present, however, when used with a fixed a priori SPP, they
cannot distinguish between a coherent desired source and coherent
noise sources. We propose to distinguish between desired and noise
sources by estimating the second-order statistics with a direction of
arrival dependent a priori SPP, which we then use to compute the
weights of a spherical harmonic domain minimum variance distor-
tionless response filter.

Index Terms— Speech enhancement, noise reduction, speech
presence probability, spherical harmonic domain

1. INTRODUCTION

In many distant speech acquisition scenarios, such as hands-free tele-
phony, hearing aids, or teleconferencing, the acquired speech signal
is corrupted by noise, such as sensor noise, diffuse noise or interfer-
ing speech. This noise degrades both the speech quality and intelli-
gibility, making communication difficult or even impossible. Noise
reduction algorithms seek to mitigate these effects and extract the
desired speech signal.

This objective is commonly achieved through the use of micro-
phone arrays [1], which allow us to take advantage of the spatial
properties of the sound field in order to improve the noise reduction
performance. These microphone arrays are mostly two dimensional
(planar). Spherical microphone arrays, where the microphones are
arranged in a spherical configuration, either suspended in free space
(an open array) or mounted on a rigid spherical baffle (a rigid ar-
ray), are advantageous due to their ability to analyze the sound field
in three dimensions [2–4]; the captured sound field can then be effi-
ciently described in the spherical harmonic domain (SHD) [5].

Over the past few decades, many spatio-temporal filters or
beamformers have been proposed to process the signals received by
microphone arrays in the spatial domain [1, 6]. SHD beamformers,
where instead of filtering and combining the individual microphone
signals, we filter and sum the SHD signals (the eigenbeams), have
more recently been proposed [7, 8].

The weights of these filters are most often a function of the noise
power spectral density (PSD) matrix. Unfortunately, in practice the
noise signals are not observable and the noise PSD must be estimated
from the noisy signals. Previously proposed noise estimators based
on the speech presence probability (SPP) [9, 10] seek to update the

noise PSD estimate only in time-frequency bins where speech is ab-
sent. A recent contribution by Souden et al. [11] proposes a Gaussian
model based multichannel SPP estimator with a fixed a priori SPP.
However, this estimator does not work when coherent noise sources,
such as interfering talkers, are present, as it cannot distinguish be-
tween desired and undesired coherent sources.

In this work, we seek to differentiate between these two types
of coherent sources. We propose to estimate the noise and desired
PSD matrices using a desired speech presence probability (DSPP)
estimator based on a direction of arrival (DOA) dependent a priori
DSPP. The a priori DSPP is estimated by comparing the instanta-
neous DOA estimate for each time-frequency bin to a given steering
direction: the closer the DOA to the steering direction, the more
likely it is that desired speech is present in this bin. We then use the
signal statistics to compute the weights of a SHD minimum variance
distortionless response (MVDR) filter.

The estimation of the noise PSD is performed in a similar way
to [12], with two key differences: we work in the SHD instead of the
spatial domain, and we use a DOA dependent a priori DSPP instead
of a direct-to-diffuse ratio dependent a priori SPP, thus allowing us
to suppress coherent sources that do not originate from the desired
look direction. Instantaneous DOA estimates are obtained using a
pseudointensity vector based method [13]. The MVDR beamformer
used is a special case of the tradeoff beamformer in [8, 14].

2. PROBLEM FORMULATION

2.1. Signal Model

In this paper, we consider a scenario in which we receive a mixture
of desired speech X originating from a source S, coherent noise Vc

(e.g., interfering speech), and incoherent noise (e.g., sensor noise)
Vi. The signal model can be expressed in the short-time Fourier
transform (STFT) and spherical harmonic domains as1:

Plm(k) = Glm(k)S(k) + Vlm,c(k) + Vlm,i(k)

= Xlm(k) + Vlm,c(k) + Vlm,i(k), (1)

where Plm denotes the received SHD signal (or eigenbeam) of or-
der l and degree m, k denotes the discrete frequency index, and
Xlm, Vlm,c and Vlm,i respectively denote the desired speech, coher-
ent noise and incoherent noise components of the eigenbeam Plm.
The acoustic transfer function is represented by Glm in the SHD.

The eigenbeams Plm,Glm,Xlm, Vlm,c and Vlm,i are dependent
on the mode strength Bl(k), which is a function of the array prop-

1For brevity the time index t is omitted in this section.
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erties (radius, configuration, microphone type). For example, for a
rigid array of radius r, Bl(k) is given by [15, p. 228]:

Bl(k) = il
 
jl(kr)−

j′l(kr)

h
(2)′

l (kr)
h

(2)
l (kr)

!
, (2)

where h(2) is the spherical Hankel function of the second kind, and
h(2)′ is its first derivative with respect to kr. To cancel this depen-
dence, we divide our eigenbeams by the mode strength to yield mode
strength compensated eigenbeams:

ePlm(k) =
h√

4πB−1
l (k)

i
Plm(k)

= eGlm(k)S(k) + eVlm,c(k) + eVlm,i(k)

= eXlm(k) + eVlm,c(k) + eVlm,i(k), (3)

where ePlm, eGlm, eXlm, eVlm,c and eVlm,i respectively denote the
eigenbeams Plm, Glm, Xlm, Vlm,c and Vlm,i after mode strength
compensation. With the addition of the

√
4π scaling factor, eP00(k)

is equal to the signal which would be received at an omnidirectional
microphoneMref placed at the center of the sphere (in the absence
of the sphere) [8, 14]. Our aim is to estimate the desired speech
component eX00 of this signal.

2.2. MVDR Beamformer

For convenience, we choose to rewrite (3) in vector notation, where
each of the vectors is of length N = (L + 1)2, the total number of
eigenbeams up to order L:

ep(k) = eg(k)S(k) + evc(k) + evi(k)

= ex(k) + evc(k) + evi(k)

= d(k) eX00(k) + evc(k) + evi(k), (4)

where

ep(k) =
h eP00(k) eP1(−1)(k) eP10(k) eP11(k) · · · ePLL(k)

iT

,

d(k) =

"
1
eG1(−1)(k)eG00(k)

eG10(k)eG00(k)

eG11(k)eG00(k)
· · ·

eGLL(k)eG00(k)

#T

,

and ex(k), eg(k), evc(k) and evi(k) are defined similarly to ep(k).
The desired speech eigenbeams eXlm are coherent across l and

m [8, 14], therefore the desired signal vector ex(k) can be expressed
as ex(k) = γex eX00

(k) eX00(k), where

γex eX00
(k) =

E
hex(k) eX∗00(k)

i
E
h
| eX00(k)|2

i (5)

is the partially normalized [with respect to eX00(k)] coherence vector
between ex(k) and eX00(k), and E [·] denotes mathematical expecta-
tion. Using (5), (4) can be expressed as

ep(k) = γex eX00
(k) eX00(k) + evc(k) + evi(k)

= γex eX00
(k) eX00(k) + ev(k), (6)

where we have defined the noise signal vector ev(k) = evc(k)+evi(k).

We assume that ex(k), evc(k) and evi(k) are mutually uncorre-
lated, therefore the PSD matrix Φep of ep can be expressed as

Φep(k) = E
hep(k)epH(k)

i
= Φex(k) + Φev(k)

= Φex(k) + Φevc (k) + Φevi (k), (7)

where Φex(k) = φ eX00
(k)γex eX00

(k)γHex eX00
(k), Φev(k) =

E
ˆev(k)evH(k)

˜
, Φevc (k) = E

ˆevc(k)evH
c (k)

˜
and Φevi (k) =

E
ˆevi(k)evH

i (k)
˜

are respectively the PSD matrices of ex(k), ev(k),evc(k) and evi(k), and φ eX00
(k) = E

h
| eX00(k)|2

i
is the variance ofeX00(k).

The output of our beamformer is obtained by applying a com-
plex weight to each eigenbeam, and summing over all eigenbeams:

Z(k) = hH(k)ex(k) + hH(k)evc(k) + hH(k)evi(k)

= eXfd(k) + eVrcn(k) + eVrin(k), (8)

where eXfd(k) = hH(k)ex(k) = hH(k)γex eX00
(k) eX00(k) is the fil-

tered desired signal, eVrcn(k) = hH(k)evc(k) is the residual coherent
noise and eVrin(k) = hH(k)evi(k) is the residual incoherent noise.

We design a minimum variance distortionless response (MVDR)
beamformer which seeks to minimize the residual (coherent and in-
coherent) noise with the constraint that the desired signal is not dis-
torted, i.e.,

min
h(k)

hH(k)Φev(k)h(k) s.t. hH(k)γex eX00
(k) = 1,

for which the filter weights are given by [8, 16]

hMVDR(k) =
Φ−1ev (k)γex eX00

(k)

γHex eX00
(k)Φ−1ev (k)γex eX00

(k)
. (9)

3. SIGNAL STATISTICS ESTIMATION

In order to compute the MVDR filter in (9), we must estimate the
noise PSD matrix Φev, as well as the propagation vector γex eX00

. In
this section, we propose a method for this based on SPPs.

We introduce the following two hypotheses regarding the pres-
ence of desired speech in each time-frequency bin:

H0(k, t) : ep(k, t) = ev(k, t)

indicating desired speech absence
H1(k, t) : ep(k, t) = ex(k, t) + ev(k, t)

indicating desired speech presence

A minimum mean square error estimate of the noise PSD matrix
taking into account the probability of these two hypotheses is given
by2

E
hevevH |epi =f(H0|ep)E

hevevH |ep,H0

i
+ f(H1|ep)E

hevevH |ep,H1

i
, (10)

where f(H1|ep) is the multichannel a posteriori desired speech pres-
ence probability (DSPP) and f(H0|ep) = 1− f(H1|ep). A common

2For brevity, the dependencies on the discrete frequency and time indices
k and t are omitted where possible in this section.
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way of approximating (10) is to recursively estimate the PSD ma-
trix with a smoothing factor that depends on the SPP, as in [11, 12],
such that the estimate is updated most rapidly when desired speech
is absent, i.e.,

Φ̂ev(t) = f(H0|ep)
“
αvΦ̂ev(t− 1) + (1− αv)epepH

”
+ f(H1|ep)Φ̂ev(t− 1)

= α′epepH + [1− α′]Φ̂ev(t− 1) (11)

where α′ = f(H0|ep)(1 − αv) and 0 < αv ≤ 1 is a smoothing
factor.

The propagation vector γex eX00
is given by the first column of

Φex divided by the first element φ eX00
, and is estimated by

γ̂ex eX00
= φ̂−1eX00

Φ̂ex iN , (12)

where iN = [1 0 · · · 0]T is a vector of length N . Since the noise is
always present, the desired signal is not directly observable. There-
fore, we first compute an estimate of the desired speech plus inco-
herent noise PSD Φ̂ex+evi in a similar way to Φev, i.e.,

Φ̂ex+evi (t) = α′′epepH + [1− α′′]Φ̂ex+evi (t− 1), (13)

where α′′ = f(H1|ep)(1 − αxvi ) and 0 < αxvi ≤ 1 is a smoothing
factor. We can now obtain an estimate Φ̂ex of the desired speech PSD
matrix using

Φ̂ex = Φ̂ex+evi − Φ̂evi . (14)

The propagation vector estimate γ̂ex eX00
is therefore updated most

rapidly when desired speech is present. We assume that the incoher-
ent noise evi is stationary; its PSD matrix can therefore be estimated
during initial noise only frames.

3.1. Multichannel Desired Speech Presence Probability

Assuming the desired speech, coherent noise, and incoherent noise
can be modeled as complex multivariate Gaussian random variables,
a multichannel DSPP estimate is given by [11]:

f̂(H1|ep) =


1 +

1− q
q

(1 + ξ)e
− β

1+ξ

ff−1

, (15)

where q = f(H1) denotes the a priori DSPP, β is defined as

β = epHΦ̂−1ev Φ̂erΦ̂−1ev ep, (16)

and ξ = tr
“
Φ̂−1ev Φ̂er

”
. The PSD matrix Φ̂er is given by

Φ̂er = Φ̂ep − Φ̂ev, (17)

and represents the desired signal plus residual noise (i.e., the noise
that has not yet been captured by the noise PSD matrix). The PSD
matrix Φep is recursively estimated as

Φ̂ep(t) = αpΦ̂ep(t− 1) + (1− αp)epepH , (18)

where 0 < αp ≤ 1 is a smoothing factor.
The a priori DSPP represents our prior knowledge of the prob-

ability of desired speech presence. In previous approaches, the SPP
has been fixed [11, 17], or signal dependent [9, 10, 12]. In order for
our DSPP estimator to be able to distinguish between desired and
interfering speech, we make the a priori DSPP signal dependent.

3.2. DOA-based A Priori Desired Speech Presence Probability

In this work, we estimate the a priori DSPP using instantaneous time
and frequency dependent DOA estimates Ω̂DOA. The closer the in-
stantaneous DOA is to the steering direction Ωsteer, the more likely it
is that the desired source is present in that time-frequency bin. We
define the opening angle ΘΩsteer,Ω̂DOA

as the angle between Ωsteer and
Ω̂DOA. We can then express the a priori DSPP as

q(k, t) = w
“

ΘΩsteer,Ω̂DOA
(k, t)

”
, (19)

where w(Θ) is a windowing function (e.g., Hamming, Gaussian)
centered around Θ = 0. The width of the main lobe determines the
region of interest around Ωsteer; e.g., with a Gaussian window this
region is determined by the standard deviation of the Gaussian.

As previously shown in [13], DOA estimates can be obtained
for each time-frequency bin using a combination of zero- and first-
order eigenbeams obtained with a spherical microphone array. The
reader is referred to [13] for details of the computation of the DOA
estimates from X00, X1(−1), X10 and X11.

3.3. Algorithm Summary

The noise PSD matrix Φ̂ev and propagation vector γ̂ex eX00
are recur-

sively estimated according to the following steps:

1. Estimate the a priori DSPP q(t) for the current frame using
the instantaneous DOA estimate Ω̂DOA(t) in (19).

2. Update Φ̂ep(t) using (18).

3. Estimate Φ̂er(t) as Φ̂er(t) = Φ̂ep(t)− Φ̂ev(t− 1).
4. Estimate the (a posteriori) multichannel DSPP according to

(15), using q(t), Φ̂er(t) and Φ̂ev(t− 1).
5. Compute a recursively smoothed DSPP:

f̄(t) = αff̄(t− 1) + (1− αf)f(H1(t)|ep(t)), (20)

where 0 < αf ≤ 1 denotes a smoothing parameter.
6. Avoid stagnation of the noise PSD matrix by setting the

multichannel DSPP to min (fmax, f(H1(t)|ep(t))) whenever
f̄(t) > fmax.

7. Update Φ̂ev(t) according to (11) by using f(H0(t)|ep(t)).

8. Update Φ̂ex+evi (t) by using f(H1(t)|ep(t)) in (13), and esti-
mate γ̂ex eX00

(t) according to (12).

4. PERFORMANCE EVALUATION

4.1. Experimental Setup

We evaluated the performance of the proposed DOA-based second-
order statistics estimation algorithm by using the estimated statistics
to compute the weights of the MVDR filter defined in (9).

We simulated a rigid Q = 32 microphone array with radius
4.2 cm placed approximately in the center of a room with dimen-
sions 5× 7× 4 m and a reverberation time of 300 ms, using SMIR-
gen, a room impulse response generator for spherical microphone
arrays [18, 19]. We applied the MVDR beamformer to eigenbeams
up to order L = 3, of which there are N = (L+ 1)2 = 16 in total.

A desired talker was placed at an azimuth of 0◦, and two inter-
fering talkers at azimuths of 130◦ and 210◦; all three talkers were
placed at an elevation of 0◦ and a distance of 1 m from the center
of the array. The desired and interfering speech signals consisted of
male and female speech from the EBU SQAM dataset [20].
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Fig. 1. Speech distortion index, input SNRs and output SNR as a
function of the input signal to coherent noise ratio

The incoherent noise consisted of spatio-temporal white Gaus-
sian noise with a constant input signal to incoherent noise ratio
(iSINR) of 25 dB at the reference microphone Mref. It should be
noted that the incoherent noise power atMref is reduced by a factor
of Q|B0(k)|2 with respect to the sensors [14, 21]; with Q = 32
microphones, at low frequencies an iSINR of 25 dB at Mref cor-
responds to an iSINR of around 10 dB based on the noise power
at the sensors. The coherent noise had an input signal to coherent
noise ratio (iSCNR) between −10 and 30 dB atMref. The coherent
and incoherent noise levels were set based on active speech levels,
computed according to ITU-T Rec. P.56 [22].

Processing was performed in the STFT domain at a sampling
frequency of 8 kHz, with a frame length of 64 ms and an overlap
of 50% between successive frames. In order to obtain the a priori
DSPP, we applied a Gaussian window with a standard deviation of
6◦ to the opening angles Θ. The smoothing factors were empirically
chosen as αv = 0.93, αxvi = 0.7, αp = 0.7, and αf = 0.8; the
maximum long-term DSPP was chosen as fmax = 0.99.

4.2. Results

In Fig. 1 we plot (as a function of the iSCNR) the speech distortion
index at Mref, as well as the signal to (coherent plus incoherent)
noise ratio (SNR) at the sensor with the highest SNR (the ‘best sen-
sor’), at the reference microphone Mref, and at the output of the
beamformer. The speech distortion index was computed by averag-
ing the fullband speech distortion index defined in [16, eqn. 4.44]
over 16 ms frames. The input and output SNRs were computed by
taking the segmental SNR over 16 ms frames, after applying the
frequency weighting defined in ITU-R 468, and discarding silent
frames determined according to ITU-T Rec. P.56. Both the speech
distortion index and the SNRs were computed over a 40 s multi-talk
segment, with one or two interfering talkers active at all times.

As expected, we find that as the iSCNR increases, our a priori
DSPP and a posteriori DSPP estimates become more accurate, and
the speech distortion index decreases. We also find that the array
gain with respect to Mref (i.e., oSNR - iSNR at Mref in dB) de-
creases as the iSCNR increases; this is due to the fact that at high
iSCNRs, we are limited by the MVDR filter’s maximum incoherent
noise reduction factor of 10 log10(Q) = 15 dB [14,23] with respect
to the sensors.

Finally we note that at low iSCNRs where the coherent noise has
high power, the input SNR atMref is lower than at the best sensor,
since the reference microphone Mref is omnidirectional, while the
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Fig. 2. Time-frequency plots of the received signal P̃00 (a), opening
angles Θ (b), a posteriori DSPP (c), and output signal Z (d).

best sensor has some directionality due to the scattering introduced
by the rigid sphere. At high iSCNRs where the incoherent noise is
more significant, the input SNR at Mref is higher than at the best
sensor, due to the fact that the incoherent noise power is reduced by
a factor of Q|B0(k)|2 (see Sec. 4.1).

In Fig. 2 we show some example time-frequency plots of the re-
ceived signal P̃00, the opening angles Θ, the a posteriori DSPP, and
the beamformer output signal Z, for an iSCNR of 10 dB and three
time segments: single-talk (desired speech only), single-talk (inter-
fering speech only), and double-talk. It can be seen that during the
interfering speech only segment, the a posteriori DSPP remains low
for most time-frequency bins, as desired, thanks to the DOA-based
a priori DSPP. In Fig. 2 (d) we see that, as a result, the interfering
speech is suppressed in addition to the incoherent noise.

5. CONCLUSIONS

In this paper, we proposed an algorithm to suppress both coherent
and incoherent noise sources. We first proposed a desired and noise
PSD matrix estimator based on the DSPP, with a DOA-dependent
a priori DSPP. We then used the signal statistics to compute the
weights of an MVDR filter, which we applied to the received eigen-
beams. Finally, we showed that the proposed algorithm achieved
good noise suppression (with an array gain of around 15 dB) with
only moderate speech distortion (with a speech distortion index of
approximately 6.5 dB). These results were confirmed by informal
listening tests.
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