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ABSTRACT

In this paper, we present a novel beamforming algorithm that
is designed for spherical microphone arrays and formulated in
the spherical harmonic domain. The proposed algorithm em-
ploys sparse recovery, a compressed sensing technique, and
assumes the position of the source signals are unknown. A
formal listening test was conducted to evaluate the perfor-
mance of the proposed algorithm and the results indicate the
effectiveness of the proposed algorithm.

Index Terms— Spherical Microphone Arrays, Source
Localization, Beamforming, Compressed Sensing

1. INTRODUCTION

Spherical microphone arrays provide a promising tool for
the spatial analysis of complex sound fields that facilitate the
transformation of microphone domain signals into the spher-
ical harmonic domain. Working in the spherical harmonic
domain has several advantages including scalability and the
ability to rotate the sound scene by a simple matrix operation.
Thus, spherical microphone array signal processing has be-
come an important technique in various applications such as
sound field recording [1, 2, 3], sound field analysis [4, 5, 6, 7],
source localization [8, 9], speech enhancement [10], etc.

In this paper, we employ compressed sensing (CS) tech-
niques to create a new beamforming algorithm for spher-
ical microphone arrays. Compressed sensing is a sensing
paradigm that defines the sparse inverse solutions for under-
determined systems. More information about the CS tech-
nique can be found in [11]. This work is based on our
previous work [12, 13]. In [12], Wabnitz el al. proposed an
algorithm for upscaling ambisonic sound scenes using the
CS technique. It allows more loudspeakers to be used during
the playback, resulting in a larger sweet spot and improves
sound quality. In this work, we employ the CS technique
to develop a super-resolution beamforming algorithm. The
proposed beamforming algorithm is developed in the “up-
scaled” spherical harmonic domain. We present the results of
a psychoacoustic listening test that evaluates the performance
of the proposed algorithm compared with other algorithms.

Section 2 describes the methods behind the proposed super-
resolution beamforming technique. Section 3 describes the
psychoacoustic listening test and Section 4 presents the re-
sults. In Section 5, we conclude the paper.

2. METHOD

2.1. Sparse Plane-Wave Decomposition

Consider a general spherical microphone system with L mi-
crophone signals which is modeled as:

xl(t) =

N∑
n=1

gl,n(t)⊗ sn(t), l = 1, 2, . . . , L , (1)

where xl(t) is the signal at the l-th microphone, sn(t) is the n-
th source signal, N is the total number of the source signals,
gl,n(t) is the impulse response describing the room transfer
function from the n-th source signal location to the l-th mi-
crophone and ⊗ represents the convolution operation. The
spherical harmonic expansion, also referred to as the higher
order ambisonic (HOA) signals, of a sound field correspond-
ing to a set of plane waves in the time-frequency domain can
be expressed as a simple matrix product:

b(m, f) = Yplws(m, f) , (2)

where

b(m, f) =
[
b00(m, f), b

−1
1 (m, f), . . . , bλλ(m, f)

]ᵀ
,

Yplw = [y(θ1, φ1),y(θ2, φ2), . . . ,y(θP , φP )] ,

y(θp, φp) =
[
Y 0
0 (θp, φp), Y

−1
1 (θp, φp), . . . , Y

λ
λ (θp, φp)

]ᵀ
,

s(m, f) = [s1(m, f), s2(m, f), . . . , sP (m, f)]
ᵀ ,

(.)ᵀ denotes the transpose, b(m, f) is a (λ + 1)2 × 1 vector
containing the STFT samples of the order-λ HOA signals for
time window m and frequency bin f , Yplw is a (λ+ 1)2 × P
spherical harmonic matrix, truncated to order λ, with column
p providing the spherical harmonic expansion for a plane-
wave source located in the direction (θp, φp), P is the total
number of columns (entries) in the matrix Yplw (dictionary)
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of possible plane-wave source directions and is typically cho-
sen much larger than (λ + 1)2, s(m, f) is a P × 1 vector of
the plane-wave source signals. The p-th row of s(m, f) is
non-zero if there is a signal in the direction (θp, φp).

Equation (2) is an under-determined system of equations.
In general, there are an infinite number of solutions and the
inverse problem is ill-posed. Our approach for solving this
ill-posed problem is to impose sparsity on s(m, f), so that the
resulting sound field is explained by a small number of plane-
wave sources. Note that it has been found that the spatial
sound field is more likely to be sparsely represented within a
sub-band of frequencies than over the full bandwidth [14] and
thus, the proposed algorithm operates in the time-frequency
domain. Moreover, we assume that the source signals are
non-moving sources so that the solutions will have a com-
mon sparsity pattern over a short time interval. We solve the
following sparse recovery problem:

minimize ‖S(m, f)‖1,2
subject to B(m, f) = YplwS(m, f) , (3)

where

B(m, f) = [b(mτ, f),b(mτ + 1, f), . . .

,b(mτ + T − 1, f)] ,
S(m, f) = [s(mτ, f), s(mτ + 1, f), . . .

, s(mτ + T − 1, f)] ,

B(m, f) is a (λ+1)2×T matrix containing the T consecutive
STFT samples of the order-λ HOA signals with τ being the
increment between analysis windows, S(m, f) is a P × T
matrix of the plane-wave source signals and ‖.‖1,2 denotes
the l1,2-norm and is defined as:

‖A‖1,2 =
∑
i

√∑
j

A2
i,j .

The computational cost of the above optimization problem (3)
can be high depending on the size of the matrix B(m, f). In
order to reduce the computational complexity and the sensi-
tivity to noise, a data dimension reduction method proposed
in [15] is employed. It can been seen that recovering S(m, f)
from B(m, f) is equivalent to applying a demixing matrix to
the HOA signals. Thus, the optimization problem in (3) can
be reformulated as:

minimize ‖D(m, f)B(m, f)‖1,2
subject to D(m, f)Yplw = I , (4)

where D(m, f) is the demixing matrix and I is the identity
matrix. Significantly, we apply an overlap-add method which
estimates the demixing matrix instead of the plane-wave sig-
nals. By applying a smoothing operation to the demixing
matrix instead of the plane-wave signals, we avoid smear-
ing the spectral characteristics of output signals which can

Fig. 1. A spatial spectrum for four-sources scenario is shown.
The peaks correspond to the estimated position of source sig-
nals. The actual position of the source signals are (0◦, 0◦),
(40◦, 0◦), (−60◦,−20◦) and (−30◦, 20◦).

cause speech distortion [12]. Once the demixing matrix is ob-
tained, the plane-wave signals can be calculated by applying
D(m, f) to the order-λ HOA signals:

ŝ(m, f) = D(m, f)b(m, f) . (5)

The estimated plane-wave signals can then be used to identify
the direction of the source signals and “upscale” the order-λ
HOA signal to a higher order, λ′.

2.2. Source Localization and HOA upscaling

In this section, we describe the method for localizing the
sources and upscaling the HOA signals. In order to localize
the sources, we calculate the power spectrum of the esti-
mated plane-wave signals. Because the frequency band for
accurate HOA encoding is limited by measurement noise at
low frequencies and spatial aliasing at high frequencies, we
only calculate the power spectrum of the estimated plane-
wave signals within the frequency range for which there is
an accurate HOA encoding. The power spectrum of the esti-
mated plane-wave signals as a function of direction in space
is referred to as the spatial spectrum and is calculated as:

ρ(p) =

M∑
m=1

fhigh∑
f=flow

‖ŝp(m, f)‖2 , p = 1, 2, . . . , P , (6)

where ρ(p) is defined as the spatial spectrum, ŝp(m, f) is the
p-th column vector in ŝ(m, f) and flow and fhigh are the lower
and upper cutoff frequencies index, respectively. The peaks in
the spatial spectrum correspond to the location of the source
signals. An example of a spatial spectrum for four sources
in an anechoic scenario is shown in Figure 1. It can been
seen that the peaks are easily identified and the sidelobes are
suppressed.

The estimated plane-wave signals can then be used to
“upscale” the order-λ HOA signals to a higher order λ′,
where the number of components in the higher order satisfies
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(λ′ + 1) < P . This can be mathematically expressed as:

b′(m, f) = Y′plwŝ(m, f)

= Y′plwD(m, f)b(m, f)

= P(m, f)b(m, f) , (7)

where

b′(m, f) =
[
b00(m, f), b

−1
1 (m, f), . . . , bλ

′

λ′(m, f)
]ᵀ

,

Y′plw = [y′(θ1, φ1),y
′(θ2, φ2), . . . ,y

′(θP , φP )] ,

y′(θp, φp) =
[
Y 0
0 (θp, φp), Y

−1
1 (θp, φp), . . . , Y

λ′

λ′ (θp, φp)
]ᵀ

,

b′(m, f) is the order-λ′ HOA signal, Y′plw is a (λ′ + 1)2 ×
P spherical harmonic matrix, truncated to order λ′ and
P(m, f) = Y′plwD(m, f) is defined as the upscaling HOA
matrix. It should be noted that the upscaled HOA signals pro-
vide higher spatial resolution than the original HOA signals,
which are order limited by the number of microphones in the
array.

2.3. Super-Resolution Beamforming

Once the upscaled HOA signals and the estimated position of
source signals are obtained, it is clear that we can beamform
with the upscaled HOA signals. We refer to this as super-
resolution beamforming. In this section, we describe two
super-resolution beamformers: the super-resolution spherical
beamformer (SR-SB) and the super-resolution minimum vari-
ance distortionless response (SR-MVDR) beamformer. For
the SR-SB, the n-th source signal is estimated as:

ŝn(m, f) =
y′(θ̂n, φ̂n)

ᵀ

(λ′ + 1)2
b′(m, f), (8)

where (θ̂n, φ̂n) is the estimated direction of the n-th source
signal.

For the SR-MVDR beamformer, the n-th source signal is
estimated by applying a weight vector to the upscaled HOA
signals:

ŝn(m, f) = wn(m, f)
Hb′(m, f) , (9)

where (.)H denotes the Hermitian transpose. Similar to the
standard MVDR beamformer, The SR-MVDR beamformer
aims to minimize the output signal power subject to a distor-
tionless constraint on the response of the beamformer in the
look direction:

minimize wH
n(m, f)Rb′(m, f)wn(m, f)

subject to wn(m, f)
H(P(m, f)y(θ̂n, φ̂n)) = 1 . (10)

where Rb′(m, f) is a λ′ × λ′ correlation matrix for the up-
scaled HOA signals. The weighting vector wn(m, f) can be
calculated as:

wn(m, f) =
R−1b′ (m, f)vn(m, f)

vn(m, f)HR
−1
b′ (m, f)vn(m, f)

. (11)

Table 1. The actual direction for each source signal

Source index A B C D E F

Azimuth (◦) 0 40 -60 -30 -160 100
Elevation (◦) 0 0 -20 20 0 0

where vn(m, f) = P(m, f)y(θ̂n, φ̂n) is defined as the man-
ifold vector for the SR-MVDR beamformer.

3. EXPERIMENT

Computer simulations were used to evaluate the performance
of the super-resolution beamforming algorithms. Three dif-
ferent multi-sources scenarios were simulated for both ane-
choic and reverberant sound conditions. The multi-sources
scenarios are comprised of a two-source scenario, a four-
source scenario and a six-source scenario. A multichannel
room acoustics simulator, MCROOMSIM, that is suitable
for a spherical microphone array simulation [16], was used
to simulate the anechoic and reverberant sound conditions.
Both the anechoic and reverberant room had the same size of
14 m×10 m×3 m. The average reverberation time (RT60)
for the reverberation room is approximately 0.35 seconds.
The spherical microphone array is located (7 m, 4 m, 1.3 m)
relative to the corner of the room. The sources are positioned
two metres away from the microphone array and the direction
for each source relative to the microphone array is shown in
Table 1. For the multi-source scenarios, the sources were
located as follows: the two-source scenario uses position A
and B in Table 1; the four-source scenario uses position A to
D and the six-source scenario used position A to F. Source A
was always set as the target signal for all scenarios.

The spherical microphone array consists of two concen-
tric arrays of 16 omnidirectional microphones. There are 16
microphones located on the surface of a rigid sphere with a
radius of 3.5 cm; the other 16 microphones are located on
the surface of a open sphere with a radius of 15 cm. Room
impulses responses (RIRs) were obtained for different source
locations around the spherical microphone array using MC-
ROOMSIM. These RIRs were then used to filter different
voice recordings and combined together to create test mix-
tures that simulate spherical microphone array recordings in
an anechoic room and a reverberant room. In addition, a -40
dB RMS uncorrelated Gaussian white noise is added to each
microphone signal in order to model the effect of measure-
ment noise. The mixture signals were approximately 4 sec-
onds in duration with all of the audio processed at a sampling
rate of 16 kHz.

The details for the super-resolution beamforming compu-
tation are as follows. The upscaling parameters were chosen
as P = 642, T = 129, λ = 2 and λ′ = 4. The length of the
analysis window used for estimating the demixing matrix for
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the sparse plane-wave decomposition was 512 samples with a
50 percent overlap between adjacent windows. The frequency
range used to compute the spatial spectrum is 350 to 3500 Hz.
An iteratively reweighted least squares (IRLS) algorithm [14]
was applied to solve the optimization problem (4). The for-
getting factor used for smoothing between neighbouring time
analysis windows was set to 0.3.

A psychoacoustic listening test was conducted to compare
the super-resolution beamforming with other techniques. A
MUSHRA-like [17] test paradigm was employed. The low
anchor was the raw microphone signal and the reference sig-
nal was the clean source signal located at position A. The ref-
erence signal was not hidden so that listeners could clearly
identify the target signal. The listening test was conducted in
a sound-attenuating booth to reduce external sound interfer-
ence. There were several beamforming test conditions: (1)
the unprocessed raw microphone signal; (2) the SR-MVDR
beamformer; (3) the SR-SB; (4) the spherical beamformer us-
ing the order-2 HOA signals (o2-SB); (5) the MVDR beam-
former using the order-2 HOA signals (o2-MVDR); (6) the
MVDR beamformer using the raw microphone signals (mic-
MVDR) and (7) the MVDR beamformer using theoretical
order-4 HOA signals (o4-MVDR). The listener’s task was to
rate the relative quality of the test stimuli on a scale from 0
(poor) to 100 (excellent).

4. RESULTS AND DISCUSSION

Six listeners participated in the listening test. The results of
the listening test are shown in Figure 2. The average ratings
for the various beamforming methods are shown for the three
multi-source scenarios for both the anechoic and reverberant
conditions. The average ratings were obtained by first apply-
ing a z-score to the data for each listener and then computing
the average. The errorbars indicate the 95% confidence in-
terval. For the anechoic listening condition (Figure 2a),we
have the following results. The true order-4 MVDR signals
scored the highest. The SR-MVDR beamformer is rated high-
est compared to the other beamforming methods for the two-
source scenario, while the SR-SB beamformer is rated high-
est compared to the other beamforming methods for the six-
source scenario. When there are four sources, the SR-SB
and SR-MVDR beamformers perform equally well. The ad-
vantage of the super-resolution beamforming seems to come
more into play under reverberant listening conditions. For the
reverberant listening condition (Figure 2b), the SR-SB beam-
former is rated as high as the true order-4 beamformer. Sur-
prisingly, the SR-MVDR beamformer performs poor in rever-
berant sound conditions. Perhaps one explanation for this is
that the manifold vector for the SR-MVDR method, v(m, f),
varies over time and frequency and sometimes does not steer
in the right direction when the target signal is silent.
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Fig. 2. The results of the listening test are shown for the two,
four, and six source scenarios for the (a) anechoic and (b)
reverberant sound conditions.

5. CONCLUSION

In this paper, we propose a super resolution beamforming al-
gorithm for spherical microphone arrays. The proposed al-
gorithm employs sparse recovery to localize and separate the
source signals. Results of a formal listening indicate that the
performance of the order-2 upscaled to order-4 SRSB beam-
former is as good as the true order-4 MVDR beamformer. In
future work, we will investigate methods to improve the up-
scaled MVDR beamformer.
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