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ABSTRACT 

 
This paper introduces a dereverberation algorithm based on 

Linear Prediction (LP) applied to the outputs of an Acoustic Vector 

Sensor (AVS). The approach applies adaptive beamforming to take 

advantage of the directional outputs of the AVS array to obtain a 

more accurate LP spectrum than can be obtained with a single 

channel or Uniform Linear Array (ULA) with a comparable 

number of channels. This is then used within a modified version of 

the Spatiotemporal Averaging Method for Enhancement of 

Reverberant Speech (SMERSH) algorithm derived for the AVS to 

enhance the LP residual signal. In a highly reverberant 

environment, the approach demonstrates a significant improvement 

compared to a ULA as measured by both the Signal to Reverberant 

Ratio (SRR) and Speech to Reverberation Modulation Energy 

Ratio (SRMR) for sources ranging from at 1m to 5m from the 

array.  

Index Terms: Acoustic Vector Sensors, Dereverberation, Speech 

Enhancement 

1. INTRODUCTION 

 

The effect of reverberation on speech and audio plays an 

important role in making the sound more natural, but when the 

level of reverberation increases (beyond     = 1s) it significantly 

degrades the quality of the speech signals in terms of intelligibility 

due to box effect and distant talker effect [1, 2]. Reverberation also 

leads to altering of the parameters derived for source-filter models 

of speech typically used in applications such as distant speech 

recognition and hence degrades their performance [2]. There are 

several methods that can be used for enhancing speech through 

dereverberation including beamforming methods; traditional 

speech enhancement methods; and blind system identification and 

equalization methods, where the acoustic impulse response of a 

room is  identified blindly and then used to design an equalization 

filter [2]. These methods can also be categorized into single or 

multichannel approaches. This paper focuses on the latter methods, 

which generally result in significant performance gains compared 

to single channel approaches [2].  

Estimation of a room impulse response or acoustic transfer 

function (ATF) is difficult to obtain accurately [2] as it depends on 

the geometry, the furniture in the room and materials used in the 

construction of the room. In contrast multichannel algorithms that 

do not rely on the ATF but instead  are based on Linear Predictive 

Coding have been shown to be highly successful [3-5], including 

the Spatiotemporal Averaging Method  for Enhancement of 

Reverberant Speech (SMERSH) [2] [6]  that was designed for a 

Uniform Linear Array (ULA) of microphones. In this paper, a new 

multichannel dereverberation method based on adapting the 

SMERSH algorithm for an Acoustic Vector Sensor (AVS) is 

proposed. The AVS has three co-located velocity gradient 

microphones and one omni-direction microphone arranged 

orthogonally in an area occupying no more than 1cm3 [7]. The use 

of gradient sensors allows for precise recording of directional 

sound component and has been shown to be affective for speech 

enhancement in additive noise and mildly reverberant 

environments  [8-10] and here it is shown that adapting SMERSH 

to the AVS provides a superior technique for dereverberation in 

highly reverberant environments.  

The SMERSH algorithm has three main stages: Delay and Sum 

Beamforming (DSB); Multichannel LP; and enhancing of the LP 

residual based on larynx signal modeling. The DSB stage relies on 

accurate Time Difference of Arrival (TDOA) to perform inter 

channel time alignment and becomes unreliable when the 

reverberation time increases above 0.18s  [11]. In contrast, the 

approximate collocation of the microphones of the AVS avoids the 

necessity of time alignment and an alternative approach based on 

the Griffiths and Jim Generalized Side Lobe Canceller (GSC) 

beamformer is proposed [12, 13]. The final stage of SMERSH 

relies on an accurate LP model. Previous work has shown the 

gradient sensors of the AVS to provide a significant advantage in 

the accuracy of the LP model [7], and here a multichannel LP 

implementation for an AVS is derived.  

This paper is organized as follows: Section 2 describes the 

proposed method for dereverbration; Section 3 presents 

experiments investigating the performance of dereverbration. 

Conclusions are presented in section 4. 

 

2. DEREVERBERATION BASED ON AN AVS 
 

The system diagram of the proposed approach based on 

SMERSH is shown in Fig. 1. Dereverberation is achieved through 

processing of the LP residual and is based on the first stages of: 

multichannel LP analysis; beamforming; and a multichannel 

implementation of the Dynamic Programming Projected Phase-

Slope Algorithm (DYPSA) for glottal closure instance modeling. 

The main modifications to SMERSH for the AVS are for the 

multichannel LP and beamforming stages. 

2.1 Multichannel LP of Reverberant AVS recordings  

Signals recorded in a reverberant environment can be modeled 

as multiple sources, arriving from different directions with varying 

energies and delays. In moderately reverberant environments 

signal with the highest energy is normally the direct component 

arriving at the receiver first, followed by the early and late 

reflections. For the AVS the recorded signals can be expressed as: 
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where  ( )  ( ) and  ( )  are the AVS channels,   (    ), and 

  (    ) are the direct component and the reflected components at 

the AVS,   (    ) and   (    ) are the ATFs of the direct and 

reflected components, respectively, and        (  ) and 

        (  ) are the gain of the gradient sensors and    is the gain 

of the omni directional sensor of the AVS. Here   is the 

convolution operator. The work presented here is only based on 

dereverberation hence the noise terms in the (1), (2) and (3) have 

been omitted.  In this work, the AVS was restricted to the 2D space 

and hence only two gradient components are included in the 

analysis.  

The pressure gradient sensors in the AVS produce a direct 

representation of the particle velocity [14] the frequency responses 

of these microphones are different to that of the omni-directional 

microphone which is a direct representation of the pressure at the 

array [15]. The frequency responses of the two gradient sensors 

have a high-pass effect [15]. This high-pass effect can be assumed 

to be similar to the pre-emphasis filter which is required in 

applications such as linear prediction of speech. Hence, the 

pressure gradient sensors of the AVS can be assumed to introduce 

pre-emphasis like effect. When using the output from the omni-

directional sensor with the outputs from the gradient sensors, the 

output from the omni-directional sensor is pre-emphasised such 

that the three channels have a similar frequency response. The pre-

emphasis is performed according to [16]: 

              ( )   ( )        (   )                       (4) 

After the processing of the AVS channels with the proposed 

SMERSH algorithms the outputs are de-emphasised according to 

[16]: 

                                 ( )   ( )        (   )                       (5) 

where  ( ) is the output from the proposed SMERSH algorithm. 

In the original SMERSH algorithm, multichannel LP is 

achieved based on the average autocorrelation method. Here, this is 

derived for the AVS. The linear prediction can be expressed as[2]: 
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here       ( )   [ ( )  ( )  ( )]
  are the sampled signals of 

(1),(2) and (3),       ( ) is the LPC residual obtained from AVS 

channel,   is the prediction order and        is expressed as [2]: 

                                                   
                                                (7) 

where 

                                   [                            ]                    (8) 

and   and   are the autocorrelation matrix and first column of the 

autocorrelation matrix defined as [2]: 
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The averaged autocorrelation function for the M channels of AVS 

can be described as [2]: 
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where  ̂ and  ̂ are, respectively the     average autocorrelation 

matrix and     average autocorrelation vector. By replacing the 

  and   in (7) with   ̂and  ̂ from (10) and (11) the average LPC 

coefficient for the AVS channels is obtained. 

2.2 Adaptive Beamforming 

The spatiotemporal averaging of the speech signals is 

performed in the original SMERSH algorithm using a DSB, which 

requires time-alignment of the recorded signals prior to 

summation. However, time alignment is not require for the AVS as 

all the microphones in the array are approximately co-located [7]. 

This has two significant implications for SMERSH algorithm: 1) 

the need to apply GCC PHAT to time-align the signals is no longer 

required, hence the processing complexity is reduced; and 2) 

elimination of potential errors due to inaccuracies in determining 

the TDOA. 

The effect of reverberation on the residual signal is that in the 

absence of direct component in a section of speech the residual is 

primarily due to the reverberant components[4]. The system of Fig. 

1 includes voiced / unvoiced detection and Larynx cycle temporal 

averaging based on the residual signal. The accuracy of these 

measurements is based on the effectiveness of the DSB in reducing 

the amount of reverberation in the speech signal. Hence, in this 

work, the DSB is replaced with the more robust Griffiths and Jim 

Generalized Side Lobe Canceller (GSC) beamformer [12, 13]. 

Theoretically, when the acoustic transfer function is known, the 

GSC is able to completely remove the reverberation [17, 18]. The 

beamforming operation is divided in to three main parts: a fixed 

beamformer; blocking matrix; and an adaptive filter. The fixed 

beamformer is normally a DSB but in this work a summing 

beamformer is used as all the microphones are co- located. The 

blocking matrix is a rejection filter that blocks the desired signal 

and passes the interference and noise signals. The adaptive filter 

suppresses the outputs from the blocking matrix based on the 

feedback from the output of the beamformer. The delayed signal 

from fixed beamformer is then subtracted from the output of the 

adaptive filter. One of the drawbacks of this beamformer is leaking 

of the signal from the blocking matrix. Several solutions have been 

proposed to limit signal leakage [13]. Here the improved version of 

the GJ beamformer described in [13] is implemented for 

beamforming the AVS outputs. 

 

3. RESULTS 

 

This section describes experiments to measure the accuracy of 

the multichannel LP modelling, reverberation in the recorded 

signals and dereverberation performance of the proposed 

algorithm. 
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Figure 1: The block Diagram of the Proposed SMERSH algorithm 
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3.1 Experimental Setup 

The experimental setup for the AVS and ULA are shown in 

Fig. 2. The AVS and the ULA are placed in front of the loud 

speaker such that the array is at zero degrees in azimuth to the 

loudspeaker as shown in Fig. 2. The recordings used in this Section 

are made in a room 4 m wide by 12 m long by 3 m high with 

concrete walls and only two doors. The ceiling and the floor are 

also concrete with minimal furniture such as chairs and a table. 

The RT60 for the room was found to be 3 seconds. The database of 

speech sources described in [19] was used. Recordings were made 

with the loudspeaker 1,2,3,4 and 5 m from the array. The 

microphone array is fixed such that the loud speakers are at zero 

degrees azimuth to the array as shown in Fig. 2. Recordings were 

sampled at 48 kHz and down-sampled to 16 kHz. The recordings 

were made with the AVS array of  [7] and a ULA with 3 

microphones with a separation of  21mm as described in [7]. The 3 

microphone ULA was chosen to be comparable to the AVS array. 

3.2 LP Spectral Characteristics of AVS outputs 

The most widely used measure for the distortions between 

spectral envelopes between the two speech signals is the Itakura 

Saito Distance (ISD) [20]. It has been shown that the ISD can be 

used as an indicator for the subjective quality of speech. In [21], an 

enhanced version of the Itakura distance is presented, and it has 

been reported that if the ISD is less than 0.5 the difference MOS 

score is less than 1.6. The ISD between two signals can be 

expressed as [20, 22]: 

                            ‖
 ( )

 ̂( )
     

 ( )

 ̂( )
  ‖                      (12) 

where  ( ) is the spectral density of the original speech signal and 

 ̂( ) is the spectral density corresponding to the test signal. 

Fig 3 compares the ISD measure for signals recorded using an 

AVS and ULA from the database of Section 3.1. From the results it 

is seen that ISD following LP applied to a single omni-directional 

microphone recording is 4.3 dB at 1m, compared to 2.6 dB, 1.3dB 

for the x and y gradient microphones and 1.2 dB for the output 

from the multi-channel LP approach of Section 2.1. A similar trend 

is seen as the distance between the AVS or ULA to the source 

increases. This shows that the gradient channels of the AVS 

produce a much more accurate LP spectrum compared to that of 

the ULA and the spectrum of the multi-channel LP obtained from 

the AVS is much closer to the spectrum of the original clean 

speech signal. Hence, it is expected that the processing of the AVS 

channels with the proposed SMERSH algorithm will produce 

much better results than the ULA.            

3.3 Measuring the Amount of Reverberation 

There are two approaches to measure dereverberation: a 

channel based measure (Direct to Reverberant Ratio (DRR)) and a 

signal based measure (Signal to Reverberant Ratio (SRR)). The  

former is based on the reverberating system impulse response and 

hence is suitable for measuring DRR when the system impulse 

response is known or can be calculated [23]. The SRR is an 

approach used when the effect of the dereverberation algorithm 

cannot be characterized in terms of impulse response [23]. In [23], 

it was shown that, with the correct normalization, SRR is 

equivalent to DRR. In this work, SRR will be used as a measure of 

reverberation for an objective measure and is expressed as: 

                                         
‖ ( )‖ 

‖  ( )‖
                               (13) 

where   ( ) is a delayed version of the source signal  ( ). The 

SRR gives an indication of the amount of reverberation but it does 

not indicate if the filtering has reduced the perceptual quality. The 

method used for perceptual evaluation is to use a panel of listeners 

who rate the quality on a pre defined scale such as Mean Opinion 

Score (MOS). In [24] MOS tests were used to determine the effect 

of coloration and reverberation decay tail. A objective measure 

know as the Speech to Reverberation Modulation Energy Ratio 

(SRMR), that gives an accurate representation of subjective 

listening test based on the effects of coloration, reverberation tail 

effects and the overall quality and intelligibility is presented in [25, 

26]. The SRMR is expressed as [25]: 

                                             
∑  ̅ 
 
   

∑  ̅ 
  
   

                                       (14) 

where   ̅is the average modulation energy for the     modulation 

filter and    in this work is set at 8. In this work SRMR will be 

used to evaluate the performance of the proposed algorithm in 

addition to the SRR.    

3.4 Results from SRR Measures 

The dereverberation method described in Section 2 and the 

original SMERSH algorithms were applied to the recordings of the 

AVS and the ULA. In Figs 4,5,6 and 7, original is the clean speech 

signal, unfiltered is the recording made in the reverberant room 

before processing, SMERSH is the output from the original  

SMERSH algorithm and proposed is the output from the proposed 

algorithm. In the case of the ULA the original SMERSH algorithm 

is tested against the proposed algorithm with only the GSC 
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Figure 2: Experimental setup for Reverberant recordings 
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Figure 3: Itakura Saito Distance measure for a) AVS b) ULA 

0

2

4

6

8

10

12

14

O X Y Multichannel LP

It
a
k

u
ra

 S
a
it

o
  
D

is
ta

n
ce

 

Channel / algorithm 

1m 2m 3m 4m 5m

0

2

4

6

8

10

12

14

16

mic  1 mic 2 mic 3 Multichannel LP

It
a
k

u
ra

 S
a
it

o
 D

is
ta

n
ce

 

Channel / algorithm 

1m 2m 3m 4m 5m

641



changed. Since the microphones in the ULA are spatially located 

GCC PHAT has to be used in order to get the TDOA estimates as 

described before. The result for SRR of the dereverberation using 

the proposed method is presented in Fig. 4 and Fig. 5 for the ULA 

and the AVS respectively. From the results it can be seen the 

proposed method performs better than the original SMERSH 

algorithm for both arrays.  

The results for the ULA are of special importance as these 

results show the effect of using a more robust beamformer inside 

the SMERSH algorithm. When the original SMERSH algorithm is 

applied to the ULA the difference in SRR between the unprocessed 

and processed recording at 1m is 0.03 dB, and the performance 

improves as the distance is increased to 3.5 dB at 5m. When the 

proposed beamformer is introduced into the SMERSH algorithm 

improvement in terms of the difference in SRR between the 

processed and unprocessed is 1.1 dB for 1m and the difference 

increases to 3.8 dB for 5m; hence by introducing the beamformer 

there is a 10 fold improvement in the results at 1m. The poor 

results in the ULA are due to the inaccuracy in determining the 

TDOA at close proximity to the source [7]. In [7] it was shown that 

when a the ULA was used for DOA estimation which is based on 

the accurate estimation of TDOA, the ULA produces higher errors 

in DOA estimation at 1m.  

The results for the AVS (Fig. 5) show that, on average, the 

proposed method has an improvement in terms of difference in 

SRR between the unprocessed recordings to the output of the 

proposed algorithm of 7 dB for separations of 1m to 5m. For the 

original SMERSH algorithm the improvement in SRR at 1m is 2 

dB and the difference in SRR increases to 5 dB at 5m for the AVS. 

These results show that the accurate estimation of the TDOA and 

LP coefficients in combination with the GSC beamformer improve 

the performance of the SMERSH algorithm considerably. 

3.5 Results from SRMR Measures 

The results for the SRMR for the AVS and the ULA are shown 

in Fig. 6 and 7. From the results it can be seen that the original 

signal has a SRMR of 3.9 while the unfiltered signal has a SRMR 

of 2.4 a difference of 1.4 at 1m. The results of the AVS show that 

when the SMERSH algorithm is applied to the AVS output at 1m, 

a SRMR value of 2.9 is obtained with a difference of 1. The results 

show that when the proposed algorithm is applied to the AVS 

output the SRMR value is 3.74 which is difference of 0.18. The 

SRMR values for both SMERSH and the proposed algorithm 

decreases as the distance increase and for 5m the SMERSH 

algorithm and the unfiltered have the same SRMR values. But the 

proposed algorithms have a SRMR value of 2.4 which is better 

than the SMERSH and the unfiltered. For the ULA when the 

SMERSH with GSC is applied there is an improvement of 0.1 over 

the unfiltered at 1m and increases to 0.6 at 5m. In the case of the 

original SMERSH algorithm a similar result is obtained with 

SRMR of 0.1 at 1m increasing to 0.7 at 5m. Since the differences 

are too close it can be concluded that there is no significant 

improvement in terms of SRMR measure for both the algorithms 

for the ULA. A possible cause of these errors is due to miss 

alignment of speech due to in accuracy of estimated TDOA which 

was discussed in section 3.4.  

 

4. CONCLUSIONS  

 

The results presented in this paper have shown that by using an 

AVS array and introducing a robust beamformer to the well known 

SMERSH algorithm, effective dereverberation of speech sources 

can be achieved. From the results, it can be seen that by applying 

the proposed changes to the SMERSH algorithm it is possible to 

dereverberate speech in adverse conditions (RT60 > 2s) without 

requiring knowledge of the ATF. These results have also shown 

that multichannel recordings from a co-located array can be 

successfully used for speech dereverberation. The results show that 

there is an improvement of 7dB for a source at 1m in SRR for the 

proposed algorithm. Furthermore, SRMR test have shown that the 

performance of the proposed algorithm is comparable to a state of 

the art dereverberation algorithm with a SRMR score of 3.74 for 

1m and 2.4 for 5m. 
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Figure 4: SRR results for the ULA array 

 
Figure 5: SRR results for the AVS array 

 
Figure 6: SRMR for AVS array 

 
Figure 7: SRMR for ULA array 
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