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ABSTRACT

Recently developed multichannel adaptive filtering algorithms aim
at spatio-temporal decoupling of the signals by suitably chosen
transformations. In this paper we establish the relation between the
techniques of transform-domain adaptive filtering with application
to multichannel acoustic cancellation. The link between the recently
introduced source-domain and eigenspace adaptive filtering algo-
rithms is shown by means of a generic spatial transform-domain
adaptive filtering algorithm. We discuss the difference between
regularizing the identification problem in the source domain and
in the system eigenspace. Further, we study the estimation of the
multiple-input multiple-output (MIMO) system eigenspace without
modifying the highly cross correlated input signals or requiring prior
knowledge of the system and highlight the validity of the estimated
eigenspace due to system changes. Finally, we give simulation
results proving our concept.

Index Terms— Acoustic echo, adaptive filtering, eigenspace fil-
tering.

1. INTRODUCTION

Whenever hands-free and full-duplex communication is desired,
acoustic echo cancellation (AEC) is required in order to prevent
coupling the sound emitted from the P loudspeakers in the receiving
room (near-end) into the outgoing () microphone signals (which are
sent back to the far-end listener or some multimedia terminal), AEC
attempts to cancel out any contributions of the incoming loudspeaker
signals from the microphone signal by subtracting filtered versions
of the loudspeaker signals from the microphone signal. By modeling
each echo path by an FIR filter of length L, multichannel AEC is a
MIMO identification problem that can be solved by adaptive real-
izations of Wiener filtering. Wiener filters are the optimal solution
in a linear least squares error (LSE) sense. In practice, adaptive fil-
ters are used to cope with time-varying systems. The solution of the
adaptive filters converges asymptotically (in the mean) to the Wiener
solution [1]. It has been shown that cross-correlations between the
loudspeaker signals let the adaptive filter converge to a solution
that depends on the characteristics of the loudspeaker signals. Any
movement of the sound source in the transmission room results in a
breakdown of the echo cancellation performance and requires a new
adaptation of the cancellation filters [2]. Therefore, a preprocessing
stage to decorrelate the transmitted signals for a unique identifiabil-
ity of the echo paths is required to ensure robustness to sound source
movements [2, 3]. However, for high-quality applications using
music signals and massive multichannel reproduction techniques it
is often desired to avoid introducing any distortion products to the
desired loudspeaker signals.

630

A recently proposed approach for MIMO adaptive filtering in an op-
timally adjusted transform domains in [4] was shown to offer high
convergence rates even in the absence of a preprocessing stage and
prior knowledge about the system. The main idea of this approach
is to restrict the estimation to the source domain which typically has
lower dimensionality compared to the system eigenspace. More-
over, it can be shown that the estimated system is decoupled in the
source domain. Theoretically, the system can be ideally decoupled
if the eigenspace of the system to be estimated is a priori known.
The eigenspace of the MIMO system can be obtained either by the
singular value decomposition (SVD) of the system [5], which cannot
be achieved in practice since the system is in general unknown, or
by incorporating knowledge that can be obtained analytically by
considering the underlying physical problem [6]. A major problem
of this approach is that the analytical eigenfunctions are only avail-
able for rather simple geometries (e.g. sphere, box) and boundary
conditions.

In this paper we give a study of the relation between the adaptation
in the source domain and in the eigenspace of the system and high-
light how an estimation of the eigenspace of a poorly excited MIMO
system can be performed. As will be shown, the typical structure of
a MIMO system is a matrix whose number of rows P - L is much
greater than its number columns (). Therefore, the left singular
vectors corresponding to the non vanishing singular values span a
subspace in RPL of the dimension R < Q. The set of subspaces
with particular dimension lie on a Grassmann manifold [7]. Hence,
to efficiently estimate the eigenspace space of the MIMO system we
can constraint our search space to a Grassmann manifold with the
dimension R.
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Fig. 1. Illustration of echo cancellation in transformed domain
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2. PROBLEM DEFINITION AND SYSTEM MODEL

To cancel the echoes arising due to the acoustic path in the near-
end, the reproduction signals x,(¢) are filtered with the adap-
tively estimated @@ x P - L coefficients of the FIR filter, i.e., a
replica of the actual acoustic MIMO system. The resulting signal
y(t) is subtracted from the near-end microphone signals, where
t denotes the time instant. If the estimated echo paths H are
equal to the true transfer paths H, all disturbing echoes will be
canceled from the microphone signal. Formally, the error that
has to be minimized reads e(n) = y(n) — H' (n — 1)x(n),
where y(n) = [y1(n),y2(n),---,yo(n)]*, H(n) denotes the
PL x @ MIMO coefficient matrix composed by P - Q) sub-
filters, Npy = [Ppg.0s hparts -+ hpgr—1]T and n the time in-
stant. x(n) is the length-PL input signal vector (loudspeaker
signals in the near-end) x(n) = [xT (n),x3(n),---,xp(n)]T,
xp(n) = [zp(n), zp(n — 1), ;zp(n — L+ 1)]".

Minimization of the error signal leads to the well known normal
equation, which reads

H(n) = Ryt (n)Raxy (1), )

the PL x PL correlation matrix Ryxx := &{xx'} contains all
inter- and intrachannel correlations and is usually estimated by the
recursive formula with the forgetting factor c,

Rax (n) =R (n) + (1 — a)x(n)x" (n), @

and Ry := E{x y'} is estimated analogously.

3. GENERIC SPATIALLY TRANSFORMED ADAPTIVE
FILTERING FOR ILL-CONDITIONED PROBLEMS

To cope with the mentioned ill-conditioning problem due to the cor-
relation of the loudspeakers signals supplementary prior solution
knowledge has to be taken into account by regularizing the prob-
lem to determine an approximate solution that is stable under small
changes in the initial data. A very popular regularization scheme is
the energy-based regularization in the spirit of Tikhonov which can
be understood as adding a constraint on the {2-norm of vec(ﬁ(n)).
Recently developed algorithms for multichannel adaptive filtering
aim at estimating the MIMO coefficients in a transform domain in
which the system to be estimated has a sparse representation [4, 5,
6, 8]. So far, the choice of the transformation domain depends on
the available system or signal statistics. The transformation is done
by introducing the matrices C,, and Cx (see Fig. 1). The adaptation
in the system eigenspace will be notationally highlighted by setting
Cx = CEAY and C, = CEAF. For source-domain adaptive fil-
tering we will set Cx = CSPAF and C, = Cf,DAF. The SDAF
algorithm as presented in [4] exploits decoupling the estimate of the
MIMO in the source domain. In general, the real MIMO system
could not be diagonalized in the source domain. The SDAF algo-
rithm aims at decoupling the projection of the real MIMO system
onto the excitation signal subspace either by only decorrelating the
sources in the far-end by considering the principal component analy-
sis of the loudspeaker signals or ideally, by separating the sources of
the far-end by employing a probabilistic models, which is connected
to higher computational complexity. In this study, we concentrate
on the efficient approach by decorrelating the sources as presented
in [4]. In contrast to the adaptation in the source domain, in the
eigenspace of the real system the MIMO system is decoupled and
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not only its restriction on the signal subspace.
In general, the transformed input and output signals are obtained by

y == Cyy, x = Cy'x. 3)
The transformed estimate of the MIMO system is
.= c.'Hc,. )

Assuming a very special form of sparsity, namely a diagonaliza-
tion of the estimated MIMO system in the transform domain, the
{o-regularized cost function reads

. . T 2
7 (B1)) =& { () B i)}
Iy 2
+ A chc (diag (H(n))) , 5)
where A denotes the Lagrange multiplier. From a probabilistic point

2
of view, regularization is strongly related to the maximum a posteri-
ori criterion (MAP) which reads

Hc)pt = arg H}aX p(ﬂ|§: X): (6)
H
where p(-) denotes a probability density function. Note that we dis-
carded the time dependency for clarity of presentation. p(ﬂ|§, y)
denotes the a posteriori probability distribution and is given by the
Bayesian rule [9],

p(HJx,y) o p(y|x, H) - p(H). )

The constraint in Eq. (5) corresponds to a prior multivariate normal
distribution with zero mean and variance X5 = a%l,

p(H) = b (o) mg T hvec(ding(H)) (g
(2m)PHZg|
where ‘Eﬁ denotes the determinant of 3. It is easy to see that

maximizing the a posteriori log-likelihood is equivalent to minimiz-
ing the cost function in Eq. (5). /2 regularization aims at adding the
same value to all eigenvalues of an ill-conditioned system. This has
the positive effect that all eigenvalues are prevented from becoming
zero.The transformed normal equation

H=T_,T,, 9
with T, and T, denoting the diagonal transformed auto- and
crosscorrelation matrices Rxx, Rxy, respectively. Estimating the
MIMO coefficients in the transform domain using a Newton-based
algorithm can be summarized by the following steps:
1. Calculating the Hessian matrix of the constrained cost function as
given in Eq. (5). This yields a summation of the transformed auto-
correlation matrix with a weighted unity matrix I. The transformed
autocorrelation matrix can be estimated similarly to Eq. (2) using

T (n) =0T (n = 1) + (1 = a)x(n) x" (n).  (10)

2. Computing the regularized inverse of the diagonal Hessian matrix

Hess ' (n) = (T, (n) + A1) ", (11



3. A basis update step is required to ensure an estimation in the
actual transform domain [8]

12
13)

Note that the estimation in the system eigenspace does not require
updating the transformation domain due to changes in the source
domain (e.g., due to changes in the far-end).

4. Finally, computing the error and updating the filter coefficients:

G, =Cx"(n)Cx(n—1),
Geg, =C,"(n—1)Cy(n).

Y

e(n) =y(n) ~ (Go, H(n ~1)Ga, ) x(n), (14)

H(n) =G¢, H(n — 1)Ge, + Hess 'x(n)e"(n).  (15)

4. SYSTEM EIGENSPACE ESTIMATION

In the following, we outline how an estimation of the eigenspace
(CEAF, CDE,AF ) of an unknown and poorly excited MIMO system
can be performed without preprocessing the input signals or incor-
porating prior knowledge. As an input of the estimation process, we
assume having only the excitation signal x and an estimation of the
MIMO system in the source domain. The advantages of the estima-
tion in the system eigenspace are twofold. First, the system is decou-
pled in its eigenspace. Therefore, in the estimation process we do not
have to consider the off-diagonals of the transformed autocorrelation
matrix T . The second advantage becomes clear by assuming the
system H to be non degenerate, such that their singular values are
unique, a robust estimation can be performed simply by detecting
the poorly excited modes corresponding to particular singular vec-
tors of the system such that a mode-selective regularization can be
done. The estimation in the source domain, i.e., when Cx and Cy
depend on the signal in the far-end, leads to a different regularization
strategy. Especially, if Cx is chosen to contains the eigenvectors of
R it can easily be verified that the ¢2-norm regularization leads to
an estimate which is equivalent to the one obtained by the pseudoin-
verse R ! 1= lims—0 (R Ricxe + 0T) R [10].

Let us choose the following symmetric matrix for the projection on
the signal subspace

P = RuxRox - (16)

Any />-norm regularized solution of the ill-conditioned normal
equation solution can be seen as a projection of an optimal estima-
tion of the actual system on the signal subspace. This can be verified
using the identities

H™P = Ruy "Rox'P = Roy "Rox |, a7
since Rxx is symmetric, using Eq.(16) and the properties of the
pseudoinverse. Hence,

H'p=H" (18)

In the following we show how to estimate the right singular vectors
of H from projections on low rank signal spaces. Once the right sin-
gular vectors are estimated, the left singular vectors can simply be
calculated as we will show later on. The left singular vectors corre-
spond to the column range of H. Let us assume that a projection of
the optimal estimated MIMO system on the rank deficient excitation
data are given,

H' =H"P, (19)
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where H’ denotes the optimal estimation of the MIMO system as-
suming full rank excitation. For an optimal embedding of the column
vectors in an orthogonal subspace we have to minimize the following
cost function

2

. (20)
2

J(Cy) = HPT (ﬁ’ - clﬁl)

=l 5
where h denotes a column in the matrix H representing the subfil-
ters from all loudspeakers to a microphone. With C1p := PTC:

~/
we can calculate h using

=/

1 -
C:,."h,

=7
h = (clpTclp) @1
where C; is a unitary matrix with the dimensions PL x R, and
R denotes the rank of the MIMO system to be estimated. Note

~/
that in Eq. (21) h is not explicitly required since it is multiplied
with ClPT. Minimizing the cost function in (20) can be done ef-
ficiently by incorporating suitable prior knowledge about the matrix
C1 [11]. It has to represent an orthogonal basis for the subspace
of the MIMO system column vectors. Hence, we can constrain our
search space on a Grassmann manifold. In our special setup the
Grassmannian is a compact Riemannian manifold in RZ. Each
point in the Grassmann manifold of dimension R represents a sub-
space which is in turn represented by a unitary matrix C1 with the
dimensions PL x R. The geometry of algorithms with such con-
straints was studied in [7] and it has recently found a variety of ap-
plications in signal subspace estimation, e.g., in [12]. Here, we are
interested in estimating the eigenspace of a poorly excited MIMO
system. The derivation of gradient descent algorithm for the esti-
mation of the subspace spanned by the left singular vectors of the
MIMO system can be summarized as follows [7, 12]: The gradient
of the cost function (20) on the Grassmannian reads

aJ
=(1-ciCi") = 22
v ( e ) 9Cy’ @2
with
aJ T =~/ =/ c/T
——=-2(P (h —Cih h 23
ool o)l w
Using the definition
T =~/ ~/
r:=P (hfclh), (24)
we substitute in (23) and obtain
/T
VJ =2 (1 - clclT) rh 25)

To derive a gradient descent algorithm we approximate the Hessian
of the cost function by the unity matrix. The geodesic update rule in
the direction V.J for a step size 7 is then given according to [7] as

cos(un) — 1

— / / .
C, =C;1 + [ C,V U ] |: sin(;m)

} vt (6
Here, C1’ denotes the old estimation, and y is the single singular
value of the rank-one matrix A := —V.J as obtained from its com-
pact singular value decomposition. U denotes the matrix with the
left singular vectors of A, and V contains the right singular vectors.



An orthogonal basis for the nullspace of the column vectors of H
can be obtained using the Gram-Schmidt process on the matrix I —
C1C; " orits QR-decomposition with pivoting and choosing the last
P - L — R vectors [10]. We denote the resulting matrix containing
the orthogonal basis vectors of the nullspace N.. Hence, the ma-
trix CE4F .= [C1|N] decomposes the system into two orthogonal
parts: one in the system subspace as well as a part in the nullspace
of the system.

Finally, applying the QR-decomposition with pivoting on the ma-
trix HTCEAT offers the corresponding left singular vectors CEAT
of the estimated MIMO system. The reader is referred to the SVD
algorithm in [10] for verification.

4.1. Validity of the Estimated Eigenspace

The obtained matrices Cx and Cy diagonalize simultaneously all
MIMO systems {H; } fulfilling the condition
H'H, = H'H, HH! £ HA".

and (27)

Hence, system changes within the set {H;} do not require updating
the transformation matrices in the process of the filter coefficient
adaptation.

4.2. Adaptation Control

So far, the estimation of the filter coefficients in the transform do-
main and the estimation of the system eigenspace are done in a sep-
arate manner. Obviously, an automatism should be introduced to
detect changes in the eigenspace. This automatism has to ensure
an optimal embedding of the system under estimation in the chosen
transform-domain. Equation (15) shows that a change in the system
eigenspace will result in a non-diagonal update matrix. Hence, an
adequate measure is the Frobenius norm of the off-diagonal matrix:

Jo = Hoff(ng) :

. (28)
F
In practical implementations when J> exceeds a predefined thresh-
old a basis update has to be considered.

5. EXPERIMENTAL RESULTS

5.1. Performance Measures

Since we are interested in estimating the eigenspace of a MIMO sys-
tem, the most important quantity is the achieved diagonalization of
the real MIMO system after a transformation into the estimated do-
main up to a permutation matrix. Therefore we introduce a measure
for compactness and define:

vec(H)

—————dB.
max vec(H)

compactness(H) = 101log;, 29

5.2. Simulation

To illustrate the properties of the developed algorithms, an AEC ap-
plication scenario is considered. The simulation aims at a proof of
our concept. More efficient implementations for complex scenarios
can be obtained by considering a block formulation for the presented
algorithm in a similar manner to the approach in [13]. Every FIR fil-
ter of the MIMO system has a length L = 256. The MIMO system
has P = 8 inputs, and ) = 12 outputs. The filter coefficients
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2. Achieved compactness of the transformed real MIMO sys-

were chosen to be normal distributed with zero mean. For gener-
ating the input signals, the same white noise signal is fed into all
inputs with different delays. The chosen delay values lie between O
and 3 samples such that the signals are spatially highly correlated.
The estimation of the filter coefficients is performed in the source
domain. The estimation of the eigenspace is performed as described
in Sect. 4. Figure 2 depicts the achieved compactness of CXHHCy.
The simulation shows that an attenuation of more than 20 dB of the
off-diagonal elements can be reached.

6. CONCLUSION

In this paper we studied the relation between the adaptation in the
source domain and in the system eigenspace. We derived an algo-
rithm for an iterative estimation of matrices for the domain transfor-
mation into the system eigenspace based on an estimation with an
orthogonality constraints and taking into account the poor excitation
of the MIMO system due to the highly cross correlated input signals.
To prove our concept we innervate our approach with simulation re-
sults.

7. RELATION TO PRIOR WORK

Recently developed multichannel adaptive filtering algorithms aim
at spatio-temporal decoupling of the signals by suitably chosen
transformations [4, 5, 6]. The spatial decoupling is performed by
introducing transformation matrices which allow the estimation of
the MIMO system in transformed domain. So far the determination
of the transformation matrices depends either on the system or on
the signal statistics. In this paper we establish the relation between
the signal and system dependent transformations. Our study is based
on the estimation of the system eigenspace given projections of the
system on a particular signal subspace. It differs from the estima-
tion of the signal subspace estimation as presented in [14] since we
explicitly consider projections of the system to be estimated. Our
approach aims at an iterative estimation of the system eigenspace
by incorporating prior knowledge on the transformation matrix.
The problem returns to an estimation problem on a Grassmaniann
manifold. We apply insights from the adaptation on Grassmannian
manifolds as shown in [7] on our special setup while taking into
account highly intra- and intercorrelated input signals.
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