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ABSTRACT

In this contribution, we present a novel low-complexity state-space

algorithm for multichannel acoustic echo cancellation. The reduc-

tion in complexity is brought about by means of top-down imposi-

tion of mutual independence on the respective acoustic echo paths

within a variational Bayesian framework. This results in a fully di-

agonalized multichannel echo-path state estimator with a complex-

ity that varies linearly with the channel order. The state estimator is

augmented with learning rules for the model parameters that are op-

timal in the maximum-likelihood sense. We substantiate the efficacy

of our formulation by means of simulation results in the presence of

changes in the echo paths and continuous double-talk.

Index Terms— Adaptive filtering, multichannel acoustic echo

cancellation, state-space estimation.

1. INTRODUCTION

The problem of multichannel acoustic echo cancellation (MAEC)

[1, 2], and multichannel adaptive filtering in general [3, 4], has been

a subject of considerable research over the years. As compared to

the single-channel case the MAEC poses challenges of its own. Pos-

sible correlation between the respective channel excitation signals

implies the absence of a unique solution [5, 6]. Consequently, ap-

proaches were proposed to weaken the relation between the channels

that were based on directly altering the input signals [7, 8] or by in-

troducing decorrelating external signals [9]. In [10], a hybrid of the

two aforementioned approaches was also considered. Improvement

in convergence rate of various adaptive filtering configurations was

achieved in [11] by means of selective-tap update strategy.

Given an effective preprocessing stage for countering non-

uniqueness, an MAEC approach still faces the issue of robust adap-

tation in the presence of changes in the echo path and continuous

double-talk at the near-end. Here, the notion of optimal and adaptive

step-size control becomes relevant. An overview regarding step-size

control in relation to acoustic echo cancellation can be found in [12].

A rigorous frequency-domain derivation for the step-size factor is

presented in [13] that has a dependence on the system misalignment

covariance, which is to be estimated. Breining et al. [14] computed

their system misalignment dependent step-size factor using in-filter

coefficients, whereas Tourneret et al. [15] put forth an adaptation

control mechanism exploiting the generalized likelihood-ratio test.

Efficient formulations in the frequency domain based on the

recursive least-squares (RLS) criterion [16], which explicitly en-

compassed the diagonalization of the Kalman filter structure as well,

opened the door for considering a frequency-domain state-space

model for the purpose of single-channel acoustic echo cancel-

lation [17]. Augmented with maximum-likelihood (ML) model

parameter learning rules [18], the state-space frequency-domain

adaptive filter (SSFDAF) [19] offered robust adaptation via an op-

timal step-size factor. In [20], the state-space methodology was ex-

tended to the multichannel case yielding the multichannel SSFDAF

(MCSSFDAF).

Although the MCSSFDAF exploits submatrix-diagonality, it en-

tails the computation of a fully populated submatrix-diagonal state-

error covariance matrix exacting a complexity that varies as the cu-

bic power of the channel order. It is important to note that the sub-

optimal fully-diagonalized state-space filter presented in [21] is a

only a low-complexity approximation of MCSSFDAF and not ana-

lytically derived. In this paper, we propose the imposition of top-

down mutual independence within a variational framework [22, 23]

on the acoustic channels. It is shown that such an assumption renders

the state-error covariance matrix fully diagonal and thus results in

the variationally-diagonalized MCSSFDAF (VD-MCSSFDAF) with

a complexity that varies linearly with the channel order. It is demon-

strated that despite lower computational complexity as compared to

the MCSSFDAF, the VD-MCSSFDAF maintains comparable con-

vergence attributes and adapts robustly in continuous double-talk.

Note that our adaptive front-end can, of course, be augmented with

a preprocessing stage [5, 6] to counter the issue of non-uniqueness.

In Sec. 2, we introduce the frequency-domain signal model for

the multichannel state-space structure. The fully diagonalized algo-

rithm is derived in Sec. 3. Sec. 4 presents simulation results and our

contribution, in the context of prior work, is concluded in Sec. 5.

We use non-bold lowercase letters for scalar quantities, bold

lowercase letters for vectors, and bold uppercase letters for matri-

ces. Frequency-domain quantities are distinguished by an underline

and 〈·〉 is the expectation operator. The frame shift is denoted by R,

whereas M is the frame size. Superscripts T and H denote trans-

position and Hermitian transposition, respectively. FM is the DFT

matrix of size M ×M , whereas IR is an R×R identity matrix. The

symbol ⊗ denotes Kronecker product. Letters t and τ are sample-

and frame-time indices, respectively. The notation Nc

(
b | b̂,Ψb

)

is interpreted as a complex multivariate normal [18, 24] distribution

with b̂ and Ψb as the mean vector and covariance matrix, respec-

tively, i.e.,

Nc

(
b | b̂,Ψb

)
=

1

πM |Ψb|M
exp

{
−
(

b − b̂
)H

Ψ
−1
b

(
b − b̂

)}
,

such that | · | signifies the determinant of a matrix. The symbol ∂Ψb

denotes an M ×M diagonal-differential operator such that

∂Ψb
=

∂

∂Ψb

◦ IM ,

where ◦ is the element-wise Hadamard product.
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2. FREQUENCY-DOMAIN MULTICHANNEL

STATE-SPACE MODEL

Consider the multiple-input-single-out (MISO) case such that loud-

speaker signals xn,t for n = 1, . . . , N are radiated into the

loudspeaker-enclosure-microphone (LEM) system and convolve

linearly with the respective acoustic echo-path vectors wn,t to yield

the echo signal dt. Addition of observation noise st to dt results in

the microphone observation yt that can be mathematically stated as

yt =
N∑

n=1

xn,t ∗wn,t + st , (1)

where ∗ denotes linear convolution and dt =
∑N

n=1 xn,t ∗wn,t. In

order to proceed with frequency-domain modeling, we introduce the

following M × 1 definitions:

sτ = FMΥ [sτR−R+1 sτR−R+2 . . . sτR]
T

(2)

y
τ
= FMΥ [yτR−R+1 yτR−R+2 . . . yτR]

T
(3)

representing the frequency-domain observation-noise vector sτ and

the frequency-domain observation vector y
τ

, respectively, followed

by the diagonal M × M definition for the nth frequency-domain

loudspeaker signal as

Xn,τ = diag
{

FM [xn,τR−M+1 xn,τR−M+2 . . . xn,τR]
T
}

. (4)

Note that FM is the DFT-matrix of size M , Υ = [0R×L IR]
T

,

and diag {·} denotes diagonalization with L = M −R. Seeking an

overlap-save convolution, we model L non-zero coefficients of the

echo-path vector:

wn,t = [w0,n,t w1,n,t . . . wL−1,n,t]
T

(5)

to obtain the nth frequency-domain M × 1 echo-path vector:

wn,τ = FM

[
w

T
n,τR 0

T
R×1

]T
, (6)

where 0R×1 is the padding of R zeros. Using (2)–(6), we express

the frequency-domain representation of (1) using overlap-save con-

straining as

y
τ
= G

N∑

n=1

Xn,τwn,τ + sτ = GXτwτ + sτ (7)

such that G = FMΥΥT F−1
M places the overlap save constraints and

the following multichannel definitions apply

Xτ =
[
X1,τ , . . . ,XN,τ

]
, (8)

wτ =
[
w

T

1,τ , . . . ,w
T

N,τ

]T
. (9)

We model sτ as a zero-mean complex Gaussian random vector with

Ψ s,τ
=
〈
sτs

H
τ

〉
as its diagonal covariance matrix. We augment

(7) with the first-order Markov model for the nth frequency-domain

echo-path vector [17, 20]:

wn,τ = Awn,τ−1 +∆wn,τ (10)

to complete our multichannel state-space formulation. In (10), 0 <
A < 1 is the state-transition coefficient. The process-noise vector

∆wn,τ is again modeled as a zero-mean complex Gaussian random

vector with Ψ∆,n,τ
=
〈
∆wn,τ∆wH

n,τ

〉
as its diagonal covariance

matrix. We highlight that Θτ =
{
Ψ s,τ

,Ψ∆,1,τ , . . . ,Ψ∆,N,τ

}

are the N + 1 model parameters. It is essential to realize that our

notion of mutual independence implies that a distribution over the

multichannel echo-path vector can be factorized as

p(wτ ) =
N∏

n=1

p(wn,τ ) . (11)

3. VARIATIONALLY DIAGONALIZED MULTICHANNEL

STATE-SPACE ALGORITHM

As we have to learn N random variables, i.e., wn,τ , along with the

model parameter set Θτ , we revert to a variational Bayesian frame-

work [25] for obtaining the learning rules. We formulate the ob-

jective function, which is the variational lower bound (VLB) on the

log-likelihood distribution [18], as

ln p(y
τ
|Θτ ) = ln

∫
p(y

τ
,wτ |Θτ )dwτ (12)

≥

∫
ln

[
p(y

τ
|wτ ,Θτ )p(wτ |Θτ )

q(wτ )

]
q(wτ )dwτ

(13)

= L [q(wτ ),Θτ ] , (14)

where L[q(wτ ),Θτ ] is the VLB, q(wτ ) is the posterior distri-

bution on the multichannel echo path that is to be estimated, and

(13) manifests the utilization of the Jensen’s inequality [23] and

employs Bayes’ theorem to factorizes the joint distribution, i.e.,

p(y
τ
,wτ |Θτ ) = p(y

τ
|wτ ,Θτ )p(wτ |Θτ ). The independence

assumption of (11) enables the application of the mean-filed approx-

imation [26] to the sought posterior distribution, i.e.,

q(wτ ) ≈
N∏

n=1

q(wn,τ ) , (15)

which allows us to re-write VLB as

L[q(wτ ),Θτ ] ≈ L

[
N∏

n=1

q(wn,τ ),Θτ

]
. (16)

The application of variational calculus [27, 28] to the VLB yields

learning rules for the estimated nth channel posterior q⋆(wn,τ ) as

ln q⋆(wn,τ )=
〈
ln p(y

τ
,wτ |Θτ )

〉
∏

N
m=1
m6=n

q⋆(wm,τ−1
)
+ κ (17)

∝
〈
ln p(y

τ
|wτ ,Θτ )p(wτ |Θτ )

〉
∏

N
m=1
m6=n

q⋆(wm,τ−1
)
.

(18)

Note that

p(y
τ
|wτ ,Θτ ) = Nc(y

τ
|GXτwτ ,Ψ s,τ

) (19)

is the transmission distribution,

p(wτ |Θτ ) =

N∏

n=1

p(wn,τ |Θτ ) (20)
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is the prediction distribution [29] with

p(wn,τ |Θτ )=Nc(wn,τ |A ŵn,τ−1, A
2
Pn,τ−1+Ψ∆,n,τ

) , (21)

and 〈·〉∏N
m=1
m 6=n

q⋆(wm,τ−1
) and κ are expectation with respect to

∏N
m=1
m 6=n

q⋆(wm,τ−1) and the normalizing constant, respectively.

Here, ŵn,τ−1 is the estimated nth state at time τ − 1 with

Pn,τ−1 =
〈(

wn,τ−1 − ŵn,τ−1

) (
wn,τ−1 − ŵn,τ−1

)H〉
(22)

as the corresponding M ×M state-error covariance matrix. The nth

prediction distribution acts as the pseudo-conjugate prior and thus

the estimated posterior q⋆(wn,τ ) must also have a similar form, i.e.,

q
⋆(wn,τ ) = Nc(wn,τ |ŵn,τ ,Pn,τ ) . (23)

3.1. State Estimation

In order to obtain the recursion for the nth channel posterior, three

essential steps have to be taken. First, the aforementioned normal

forms of the transmission (19) and prediction (21) distributions are

substituted into (18). Second, all first- and second-order expectations

are resolved using the identities [29]:

〈
wm,τ−1

〉
q⋆(wm,τ−1

)

.
= ŵm,τ−1 , (24)

〈
wm,τ−1w

H

m,τ−1

〉

q⋆(wm,τ−1
)

.
= ŵm,τ−1ŵ

H

m,τ−1 +Pm,τ−1 .

(25)

Third, we compare the first- and the second-order terms in wn,τ

on the right-hand side of (18) with q⋆(wn,τ ) in (23) to obtain the

learning rules for the nth mean ŵn,τ and the corresponding state-

error covariance Pn,τ as

ŵ
+
n,τ−1 = A ŵn,τ−1 , (26)

P
+
n,τ−1 = A

2
Pn,τ−1 +Ψ∆,n,τ

, (27)

µ
n,τ

=
R

M
P
+
n,τ−1

(
R

M
Xn,τP

+
n,τ−1X

H

n,τ +Ψ s,τ

)−1

, (28)

ŷ
n,τ

= y
τ
−G

N∑

m=1
m 6=n

Xm,τ ŵm,τ−1 , (29)

en,τ = ŷ
n,τ

−GXn,τ ŵ
+
n,τ−1 , (30)

ŵn,τ = ŵ
+
n,τ−1 + µ

n,τ
X

H

n,τen,τ , (31)

Pn,τ = P
+
n,τ−1 −

R

M
µ

n,τ
X

H

n,τXn,τP
+
n,τ−1 , (32)

where the superscript “+” signifies the predicted quantities. In (26)–

(32), µ
n,τ

, ŷ
n,τ

, and en,τ are the M ×M Kalman step size, M × 1

effective-observation vector, and M × 1 error signal, respectively,

for the nth channel. It is important to note that except for (29) and

(30), the approximations [1, 17, 20]

GXn,τ ≈
R

M
Xn,τ (33)

GXn,τP
+
n,τ−1X

H

n,τG
H ≈

R

M
Xn,τP

+
n,τ−1X

H

n,τ (34)

have been applied to attain a diagonalized implementation using vec-

tor arithmetic. Thereafter, given a diagonally initialized Pn,τ−1 the

recursion (26)–(32) perpetually remains diagonal, and the M × M
matrix inverse in (28) boils down to simple inversion of a diagonal

matrix. Using the following multichannel definitions:

ŵτ =
[
ŵ

T

1,τ , . . . , ŵ
T

n,τ , . . . , ŵ
T

N,τ

]T
, (35)

ŷ
τ
=
[
ŷ
T

1,τ
, . . . , ŷ

T

n,τ
, . . . , ŷ

T

N,τ

]T
, (36)

X̃τ =




X1,τ . . . 0 . . . 0

...
. . .

...
...

0 . . . Xn,τ . . . 0

...
...

. . .
...

0 . . . 0 . . . XN,τ




, (37)

Pτ =




P1,τ . . . 0 . . . 0

...
. . .

...
...

0 . . . Pn,τ . . . 0

...
...

. . .
...

0 . . . 0 . . . PN,τ




, (38)

we express the variationally-diagonalized multichannel state-space

frequency-domain adaptive filter (VD-MCSSFDAF) as

ŵ
+
τ−1 = A ŵτ−1 , (39)

P
+
τ−1 = A

2
Pτ−1 +Ψ∆,τ

, (40)

µ
τ
=

R

M
P
+
τ−1

(
R

M
X̃τP

+
τ−1X̃

H

τ + IN ⊗Ψ s,τ

)−1

, (41)

eτ = ŷ
τ
− (IN ⊗G) X̃τ ŵ

+
τ−1 , (42)

ŵτ = ŵ
+
τ−1 + µ

τ
X̃

H

τ eτ , (43)

Pτ = P
+
τ−1 −

R

M
µ

τ
X̃

H

τ X̃τP
+
τ−1 . (44)

The MN×MN dimensional process noise covariance and step-size

matrices, i.e., Ψ∆,τ
and µ

τ
respectively, are defined analogously to

(38). It is evident from (38) that the VD-MCSSFDAF in (39)–(44)

is fully diagonal and, unlike the submatrix-diagonal MCSSFDAF in

[20] that has the complexity on the order O(N3M +NM log(M)),
it attains a complexity on the order O(NM + NM log(M)) [21],

i.e., linear with respect to the channel order N .

3.2. Parameter Learning

Learning of the model parameters Θτ can be carried out in ac-

cordance with the maximum-likelihood scheme presented in [18],

which entails the application of a suitable differential operator to the

VLB [28]. Due to the assumption of independence, learning of the

nth process noise covariance matrix remains contained in the dis-

cussion presented in [18]. Owing to the change in the observation

model, however, the observation-noise covariance Ψ s,τ
requires at-

tention. We substitute (19) and (21) into (16) and solve [30]:

∂Ψ s,τ
L [q⋆(wτ ),Θτ ] = 0M (45)

using (24) and (25) to obtain the learning rule for the estimate of the

observation-noise covariance, (cf. (8)):

Ψ̂ s,τ
=

R

M
XτPτX

H

τ + ẽτ ẽ
H

τ ◦ IM , (46)

where ẽτ = y
τ
− GXτ ŵτ is the composite error signal. The

Hadamard product in (46) follows from the definition of the

diagonal-differential operator in Sec. 1.
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Fig. 1. Performance at ESR = 30 dB: A step change is applied at

time 7.0 s via regeneration of near-end room impulse responses.

4. RESULTS

For our simulations, N loudspeaker signals xn,t were generated

by convolving a common source signal with N far-end impulse re-

sponses. Loudspeaker signals were then convolved with correspond-

ing near-end impulse responses wn,t and summed together with ad-

ditive near-end disturbance st to generate the observation signal yt.
All impulse responses were randomly generated with an exponen-

tial decay corresponding to T60 = 0.2 s. A sampling frequency of

fs = 8 kHz was used. The frame size and frame shift were selected

as M = 1024 and R = 256, respectively, which implied an echo-

path length of M − R = 768 samples. The true echo return loss

enhancement [20]:

ERLEtrue = 10 log10

(
σ2
dt

σ2
dt−d̂t

)
(47)

and the misalignment [31]

D = 10 log10

(∑N

n=1 ‖wn,t − ŵn,t‖
2
2∑N

n=1 ‖wn,t‖
2
2

)
(48)

were employed to measure performance, where d̂t and ŵn,t are the

estimated echo signal and the estimated nth echo path, respectively.

In Fig. 1, we compare the performance of the low-complexity

VD-MCSSFDAF with the submatrix-diagonal MCSSFDAF of [20],

with white noise excitation selected as the source signal. The near-

end white noise disturbance was added to the echo signal at an echo-

to-near-end-signal ratio:

ESR = 10 log10

(
σ2
dt

σ2
st

)
(49)

of 30 dB. The contending state-space algorithms were operated

with A = 0.9997. It is evident for N = 4 as well as for N = 8
that despite considerable complexity reduction the derived VD-

MCSSFDAF offers convergence and re-convergence properties

comparable to the computationally demanding MCSSFDAF.
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Fig. 2. Performance at ESR = 0 dB: Continuous speech-speech

double-talk with the depicted speech signal as the near-end signal.

In order to examine the robustness of the derived algorithm, we

consider a stereophonic scenario, i.e., N = 2, using speech excita-

tion for both the far- and near-end signals with continuous double-

talk at ESR = 0 dB. Input signals were passed through positive

and negative half-wave rectifiers [31] using the distortion parame-

ter αr = 0.4 . We consider a block-least-mean-square based multi-

channel frequency-domain adaptive filter (MCFDAF) [20, 32] as an

additional anchor, with its error and update equations given as

eτ = y
τ
−G

N∑

n=1

Xn,τ ŵn,τ−1 (50)

ŵn,τ = ŵn,τ−1 + µ
τ

X
H

n,τeτ . (51)

In (51), the step size µ
τ
= αΨ−1

x,τ is computed using the estimated

frequency-domain power spectral density

Ψ x,τ
= γΨ x,τ−1 + (1− γ)XτX

H

τ (52)

of the multichannel input signal Xτ . The adaptation and the smooth-

ing constants were set to α = 0.15 and γ = 0.9, respectively. We

can observe in Fig. 2 that the VD-MCSSFDAF, due to the incorpo-

ration of the estimated near-end noise covariance in the adaptation

and mutual independence assumption, outperforms the traditional

MCFDAF as well as the computationally demanding MCSSFDAF.

5. RELATION TO PRIOR WORK AND CONCLUSIONS

In [1, 16] (and references therein), efficient RLS-based multichan-

nel frequency-domain formulations were presented for acoustic echo

cancellation, which facilitated the diagonalization of the transform-

domain Kalman filter in [17]. ML-optimal parameter learning rules

for the single-channel state-space algorithm [19], i.e., SSFDAF, were

derived in [18]. The submatrix-diagonal multichannel state-space

adaptive filter, i.e., the MCSSFDAF, was presented in [20]. Moti-

vated by the spatio-temporal decorrelation exploited in [4], this pa-

per presents the derivation of a novel variationally diagonalized mul-

tichannel state-space algorithm for acoustic echo cancellation. The

derived algorithm was evaluated in the presence of changes in the

acoustic echo paths and continuous double-talk.
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