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ABSTRACT

In a previous study, the performance of an acoustic feedback/echo

cancellation system was analyzed using a power transfer function

method. Whereas the analysis result provides very accurate perfor-

mance predictions in open-loop acoustic echo cancellation systems,

it is less accurate in closed-loop acoustic feedback cancellation sys-

tems if there is a strong correlation between the loudspeaker signal

and the signals entering the microphones. This work extends the per-

formance analysis to include the effects of the nonzero correlation on

the adaptive filters. Simulation results verify that this extension pro-

vides much more accurate performance predictions in closed-loop

acoustic feedback cancellation systems.

Index Terms— Adaptive filters, acoustic feedback cancellation,

closed-loop systems, estimation bias, steady-state behavior.

1. INTRODUCTION

Acoustic feedback problems arise when a microphone of an au-

dio system picks up part of its acoustic output signal from the

loudspeaker. Acoustic feedback cancellation using adaptive fil-

ters [1–3] in a system identification setup [4, 5] has evolved to be

a state-of-the-art solution [6–12]. Much work has been done to

analyze/characterize [13–19] and improve [20–25] these adaptive

algorithms in terms of robustness, stability bounds, convergence

rate, steady-state behavior, complexity, etc.

In [26], an analysis is performed to describe the frequency

domain performance characteristics for acoustic feedback cancella-

tion (AFC) and/or acoustic echo cancellation (AEC) in a multiple-

microphone and single-loudspeaker (MMSL) system, illustrated in

Fig. 1, in terms of the concept of power transfer function (PTF).

The AFC/AEC is carried out by adaptive filters ĥi(n), where n is

the time index, and i = 1, ..., P , where P is the number of mi-

crophones, and the beamformer filters gi are performing a spatial

filtering on the feedback/echo compensated signals ei(n). The PTF

analysis in [26] determined a simple and accurate approximation

ξ̂(ω, n) of the expected magnitude-squared transfer function from

point A to B in Fig. 1, where ω is the discrete frequency index. This

approximation allowed prediction of the convergence rate, steady-

state behavior, and the tracking ability of AFC/AEC systems without

knowing the true acoustic feedback/echo paths hi(n).
For simplicity, the analysis in [26] was performed in an open-

loop system by omitting the forward path f(n) in Fig. 1, and the
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Fig. 1. A multiple-microphone and single-loudspeaker system.

loudspeaker signal u(n) was assumed to be uncorrelated with the

incoming signals xi(n). Hence, whereas the results from [26] are

very accurate for open-loop AEC systems, these results have certain

limitations in closed-loop AFC systems.

Specifically, the most significant limitation occurs when the in-

coming signals xi(n) have long tails in their autocorrelation func-

tions (compared to the system latency from microphone to loud-

speaker), such as in most music and alarm signals. The loudspeaker

signal u(n) is then correlated with xi(n). This leads to a biased es-

timation of ĥi(n) [7], and it violates the assumption of uncorrelated

u(n) and xi(n) for the PTF prediction. Thus, for strongly correlated

incoming signals, the derived PTF expressions in [26] provide poor

predictions, although the expressions are relatively accurate when

the incoming signals were speech signals as demonstrated in [26].

Another important application of the PTF approximation ξ̂(ω, n)
in AFC systems is to ensure system stability. The true PTF ξ(ω,n)
is the unknown part of the expected magnitude-squared open-

loop transfer function E[|OLTF(ω, n)|2] of the MMSL system

expressed by E
[

|OLTF(ω, n)|2
]

= |F (ω, n)|2ξ(ω,n), where

F (ω,n) is the, generally known, frequency response of f(n). If

|OLTF(ω,n)| < 1, system stability is guaranteed [27]. However,

when the estimation of ĥ(n) is biased due to the correlation be-

tween u(n) and xi(n), ξ̂(ω,n) determined in [26] would generally

be too small. Even if the forward path gain |F (ω, n)| was chosen as

|F (ω,n)| < 1/

√

ξ̂(ω,n), stability could not be guaranteed.

In this work, we derive an extended PTF approximation that in-

cludes the influence of potentially biased estimation of ĥi(n). In

particular, this is done by allowing the correlation function between

the loudspeaker signal u(n) and the incoming signals xi(n) to be

nonzero.
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2. REVIEW OF POWER TRANSFER FUNCTION

The PTF describes the expected magnitude-squared transfer function

from point A to B in Fig. 1, where the frequency responses Hi(ω, n)
of the true feedback paths hi(n) are unknown and considered

stochastic. Hence, as in [26], we define the exact PTF of the MMSL

system as ξ(ω,n) = E[|
∑P

i=1
Gi(ω)H̃i(ω, n)|

2], where Gi(ω) is

the frequency response of gi, and H̃i(ω, n) = Ĥi(ω,n)−Hi(ω, n)

is the frequency response of h̃i(n) = ĥi(n) − hi(n). Clearly,

ξ(ω,n) =
∑P

i=1

∑P

j=1
Gi(ω)G

∗

j (ω)ξij(ω,n), where ∗ denotes

complex conjugation and ξij(ω,n) = E[H̃i(ω,n)H̃
∗

j (ω,n)].
In general, however, we can not calculate the PTF ξ(ω,n)

directly because Hi(ω, n) is unknown. In [26], an approxima-

tion ξ̂ij(ω,n) ≈ E[H̃i(ω, n)H̃
∗

j (ω, n)] was introduced, where

ξ̂ij(ω,n) is expressed by a relatively simple function, leading to an

approximate PTF ξ̂(ω,n) =
∑P

i=1

∑P

j=1
Gi(ω)G

∗

j (ω)ξ̂ij(ω, n).

In [26], we derived PTF approximations ξ̂(ω,n) for sev-

eral adaptive algorithms for estimating the feedback/echo paths

hi(n). In this work, to limit our scope, we focus on ξ̂(ω, n)
for the least mean square (LMS) adaptive algorithm. Under

the assumptions of uncorrelated u(n) and xi(n), the LMS step

size µ(n) → 0, the length of the adaptive filter L → ∞, and

rxij
(k) = E[xi(n)xj(n+ k)] = 0 ∀ |k| > k0 ∈ N, the PTF could

be approximated as [26],

ξ̂(ω, n) = (1− 2µ(n)Su(ω)) ξ̂(ω, n− 1) + Lµ2(n)Su(ω)

·

P
∑

i=1

P
∑

j=1

Gij(ω)Sxij
(ω) +

P
∑

i=1

P
∑

j=1

Gij(ω)Sȟij
(ω), (1)

where Su(ω) denotes the power spectrum density (PSD) of the loud-

speaker signal u(n), Sxij
(ω) denotes the cross(auto) PSDs of the

incoming signals xi(n) and xj(n), Gij(ω) = Gi(ω)G
∗

j (ω), and

Sȟij
(ω) is the PSD of the feedback/echo path variations over time.

Furthermore, system behavior in terms of the convergence rate,

steady-state error, and the tracking error can be determined using Eq.

(1), we refer to [26] for details.

3. EXTENDED PTF IN CLOSED-LOOP SYSTEMS

In this section, we derive an extended PTF approximation for the

case where u(n) and xi(n) may be correlated. We do this based on

the bias of the Wiener solution of the adaptive filter estimation for

AFC systems.

3.1. Definition of Extended PTF

We consider the adaptive filter estimate ĥi(n) as ĥi(n) = h̄i(n) +

h̆i(n), where h̄i(n) denotes the unbiased estimate from the adaptive

algorithms if u(n) was uncorrelated with xi(n), i.e. E[h̄i(n)] =

hi(n), and h̆i(n) is the additional bias vector due to the correlation

between u(n) and xi(n).

The expected value of the adaptive filter estimate ĥi(n) which

minimizes E[e2i (n)] in MMSL systems as in Fig. 1 can be shown

to be E[ĥi(n)] = hi(n) + E[h̆i(n)], and E[h̆i(n)] is the Wiener

solution of the bias vector h̆i(n) given by

E
[

h̆i(n)
]

= E
[

u(n)uT (n)
]

−1

·E [u(n)xi(n)] , (2)

where u(n) = [u(n), u(n − 1), . . . , u(n − L + 1)]T . An unbi-

ased solution E[ĥi(n)] = hi(n) is obtained if E[u(n)xi(n)] = 0.

However, this is usually not the case for AFC systems.

We now study the impact of E[h̆i(n)] on the PTF. The frequency

response of ĥi(n) is denoted by Ĥi(ω,n) = H̄i(ω, n) + H̆i(ω,n).

We express the exact extended PTF ξ̆exact(ω,n) as

ξ̆exact(ω, n) =E





∣
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Eq. (3) can be simplified. For a small step size µ(n), in princi-

ple µ(n) → 0, the fluctuation of the unbiased adaptive estimate

H̄i(ω,n) tends to 0, i.e. H̄i(ω,n)−Hi(ω,n) → 0. We can thereby

neglect the cross-term E[H̆i(ω, n)(H̄
∗

i (ω, n) − H∗

i (ω,n))] com-

pared to the auto-term E[H̆i(ω, n)H̆
∗

i (ω, n)] when evaluating Eq.

(3), which becomes

ξ̆exact(ω,n)

=E





∣
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=ξ(ω,n) +
P
∑

i=1

P
∑

j=1

Gi(ω)G
∗

j (ω)E
[

H̆i(ω,n)H̆
∗

j (ω, n)
]

. (4)

Thus, the correlation between xi(n) and u(n) leads to a nonzero

bias term (the last term) in Eq. (4), which in turn leads to an in-

crease in the extended PTF ξ̆exact(ω, n), over the PTF ξ(ω,n) which

would have been achieved, had xi(n) and u(n) been uncorrelated.

To further simplify Eq. (4), we replace H̆i(ω, n) with its expected

value E[H̆i(ω, n)], since we are studying the steady-state effects of

E[h̆i(n)] in Eq. (2) on the PTF, and H̆i(ω,n) → E[H̆i(ω,n)] in

steady-state for the LMS step size µ(n) → 0 [28]. Furthermore, by

replacing the PTF ξ(ω,n) in Eq. (4) with its approximation ξ̂(ω,n),

we get the extended PTF approximation ξ̆(ω,n), as

ξ̆(ω,n) = ξ̂(ω,n)

+
P
∑

i=1

P
∑

j=1

Gi(ω)G
∗

j (ω)E
[

H̆i(ω, n)
]

· E
[

H̆∗

j (ω,n)
]

. (5)

The last term in Eq. (5) is independent of the step size parameter

in applied adaptive algorithms, since the expected value of adaptive

filter bias E[h̆i(n)] only depends on the incoming signals xi(n) and

the loudspeaker signal u(n) as given in Eq. (2). Furthermore, this

bias term can be considered as an additional error contribution to

the steady-state error given by ξ̂(ω,n). Therefore, while the con-

vergence of ξ̆(ω, n) is only determined by ξ̂(ω,n), the steady-state

behavior of ξ̆(ω,n) is determined by both ξ̂(ω, n) and this bias term.

In the following sections, we study the influences of this bias term.

3.2. Extended PTF Analysis

We model the forward path f(n) as f(n) = f0(n) ∗ δ(n− d), where

∗ denotes convolution, i.e. a filtering part f0(n) and a delay of d > 0
samples. Let F0(n) ∈ R

L×L and Gi ∈ R
L×L be the Toeplitz
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structured convolution matrices of the forward path filter f0(n) and

the beamformer filter gi, respectively. We define the incoming signal

vector as xi(n) = [xi(n), xi(n− 1), . . . , xi(n− L+ 1)]T , and by

considering the case that Hi(ω,n)−Ĥi(ω, n) is relatively small in a

steady-state situation, i.e. the adaptive filter provides a relatively pre-

cise estimate Ĥi(ω, n) despite an eventual bias term H̆i(ω,n) 6= 0,

we can neglect the closed-loop effect, given by the transfer function

1/(1−F0(ω,n)Gi(ω)(Hi(ω, n)− Ĥi(ω, n))), on the loudspeaker

signal vector u(n), which is now simply expressed by

u(n) =

P
∑

i=1

F0(n)Gixi(n− d). (6)

The correspondence of the resulting theory and the simulation re-

sults presented later showed that Eq. (6) is reasonable for even rela-

tively large values of the bias term H̆i(ω,n) and thereby Hi(ω,n)−

Ĥi(ω, n). Inserting Eq. (6) in Eq. (2), E[h̆i(n)] can be written as

E
[

h̆i(n)
]

=

(

P
∑

p=1

P
∑

q=1

F0(n)GpRxpq (0)G
T
q F

T
0 (n)

)−1

·

P
∑

p=1

F0(n)Gprxpi
(d), (7)

whereRxij
(k) = E[xi(n)x

T
j (n+k)] and rxij

(k) = E[xi(n)xj(n+
k)].

We compute the frequency response E[H̆i(ω, n)] of E[h̆i(n)]
using the discrete Fourier transform (DFT) matrix D ∈ C

L×L.

Since the DFT matrix D diagonalizes any Toeplitz matrix asymp-

totically, as L → ∞ [29], and the matrices F0(n), Gi, and Rxij
(0)

are all asymptotically Toeplitz matrices, each element E[H̆i(ω, n)]

of the frequency response vector DE[h̆i(n)] can be shown to be

E
[

H̆i(ω,n)
]

=

∑P

p=1
F0(ω, n)Gp(ω)Γxpi

(ω)
∑P

p=1

∑P

q=1
F0(ω,n)Gp(ω)Sxpq(ω)G

∗
q(ω)F

∗

0
(ω, n)

. (8)

Γxpi
(ω) are elements of the vector Drxpi

(d), which is the DFT of

the autocorrelation tail sequence rxpi
(d), rxpi

(d+1), . . . , rxpi
(d+

L − 1). Furthermore, Sxpq (ω) are the diagonal entries of the ma-

trix 1

L
DRxpq (0)D

H , these approach the DFT of the autocorrelation

sequence rxpq(0), rxpq(1), . . . , rxpq(L − 1), as L → ∞. Finally,

inserting Eq. (8) in Eq. (5), we get the expression for the extended

PTF approximation ξ̆(ω, n) as

ξ̆(ω,n) = ξ̂(ω,n) +
P
∑

i=1

P
∑

j=1

Gi(ω)G
∗

j (ω) (9)

·

(

∑P

p=1
F0(ω,n)Gp(ω)Γxpi

(ω)
∑P

p=1

∑P

q=1
F0(ω, n)Gp(ω)Sxpq(ω)G

∗
q(ω)F

∗

0
(ω,n)

)

·

(

∑P

p=1
F0(ω, n)Gp(ω)Γxpj

(ω)
∑P

p=1

∑P

q=1
F0(ω, n)Gp(ω)Sxpq(ω)G

∗
q(ω)F

∗

0
(ω,n)

)

∗

.

4. DISCUSSIONS

Generally, Eq. (9) is not easily interpreted. However, for a single-

microphone and single-loudspeaker (SMSL) system (P = 1), the

Table 1. Common parameters for simulation experiments.

Symbol Value Description

Ds 80000 Duration of simulation.

R 100 Number of sim. runs.

µ 2−11 LMS step size.

L 32 Length of ĥ(n).

g 0.1 · [10, 3,−2.5, 1, 0.5]T Beamformer filter.

h(0) 0.01 · [6, 0.84,−1.38]T Initial values of h(n).

N(µh, σ
2

h) N(0, 0.00192) Feedback path variation.

hx 0.01 · [10,−3, 4,−1, 0.5]T Shaping filter for x(n).

f0 [10]T Forward path filter.

d 1 Forward path delay.

extended PTF approximation ξ̆(ω,n) given by Eq. (9) simply re-

duces to

ξ̆(ω, n) = ξ̂(ω, n) +
|Γx(ω)|

2

|F0(ω,n)|2S2
x(ω)

. (10)

In general, ξ̆(ω,n) > ξ̂(ω, n) since |Γx(ω)| > 0 in Eq. (10). How-

ever, for incoming signals x(n) fulfilling rx(k) = 0 ∀ |k| > k0 ∈
N, increasing the forward path delay d would generally decorrelate

u(n) from x(n), see e.g. [30–32], and for a large value of d > k0,

we get Γx(ω) = 0 leading to ξ̆(ω, n) = ξ̂(ω, n) in Eq. (10).

Furthermore, Eq. (10) reveals that increasing the forward

path gain |F0(ω,n)| leads to a smaller bias term in ξ̆(ω,n).
Intuitively this can be explained by the fact when the forward

path gain |F0(ω, n)| gets larger, the larger is u(n) compared to

x(n), see e.g. Eq. (6), the amplitude of each element in the ex-

pected bias vector E[h̆i(n)] would thereby be smaller as also

seen from Eq. (2). However, although a large forward path gain

|F0(ω,n)| leads to a small ξ̆(ω,n) in Eq. (10), |F0(ω,n)| is

still a compromise between being large enough to ensure a rea-

sonably small bias, and being small enough to maintain system

stability. In particular, |F0(ω, n)| should be chosen according to

|F0(ω,n)| < 1/

√

ξ̆(ω, n) to ensure stability. Furthermore, using

Eq. (10), a lower bound for the magnitude-squared open-loop trans-

fer function |OLTF(ω,n)|2 = |F0(ω, n)|
2ξ̆(ω,n) is obtained as

|Γx(ω)|
2/S2

x(ω) for ξ̂(ω,n) → 0, and it is interesting to note that it

is actually independent of |F0(ω, n)|.

5. SIMULATION VERIFICATIONS

In this section, we perform simulation experiments to verify the ex-

tended PTF approximation ξ̆(ω, n) in Eq. (9) and show the improve-

ments by comparing to the PTF approximation ξ̂(ω,n) in Eq. (1).

We consider an SMSL system (P = 1) with a known feedback path

h(n), which remains fixed during the first half of the simulation ex-

periment, but undergoes variations in the second half. We use the

same procedure as described in Sec. VI-A of [26] for these simula-

tion experiments. We refer to [26] for details. The only difference

is that u(n) is no longer independently generated, but it is rather

computed in the closed-loop system as the error signal ē(n) filtered

through a time invariant forward path f . Table 1 shows the general

simulation parameters; the beamformer filter g, initial feedback path

h(0), and the forward path filter f0 are chosen to be lower order

filters for reproducibility in these experiments.

In the first simulation experiment, we verify that the extended

PTF expression in Eq. (9) can accurately predict biased steady-state

values for an SMSL AFC system using an LMS algorithm. A biased
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Simulation Result

Predicted Convergence Rate (Tangent Line)

Predicted Steady−State Value:
Time Invariant + Open−Loop System

Predicted Steady−State Value:
Time Varying + Open−Loop System

Predicted Steady−State Value:
Time Invariant + Closed−Loop System

Predicted Steady−State Value:
Time Varying + Closed−Loop System

Fig. 2. Legends for Figs. 3-5.
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Fig. 3. PTF values for frequency bins (a) l = 3. (b) l = 7. See Fig. 2 for legend.
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Fig. 4. PTF values for frequency bin 3. The forward path delay is (a) d = 1 sample. (b) d = 3 samples. (c) d = 5 samples. See Fig. 2 for

legend.
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Fig. 5. PTF values for frequency bin 3. The forward path gain is (a) |F0(ω)| = 6 dB. (b) |F0(ω)| = 10 dB. (c) |F0(ω)| = 20 dB. See Fig. 2

for legend.

estimation of h(n) is expected due to the choices of the forward path

delay d and the shaping filter hx, which is used to generate the in-

coming signals x(n) by convolving hx with a white noise sequence.

Fig. 3 shows the results at two representative example frequency

bins l = 3, 7. The true PTF values can be calculated in simula-

tions because h(n) is known. These true PTF values confirm the

PTF prediction values using Eqs. (1) and (10) for computing the

convergence rate and steady-state behaviors for the open-loop (see

details in [26]) and closed-loop systems, respectively. Furthermore,

the closed-loop PTF values for biased estimation of ĥ(n) are gen-

erally found at higher levels than the open-loop PTF values without

biased estimation.

In the second simulation experiment, we show the dependence

between forward path delay d and the PTF values. All simulation

parameters are the same as given in Table 1, except the forward path

delay, which is d = 1, 3, 5 in three different simulations. Fig. 4

shows the simulation results. The shaping filter hx is a fourth-order

filter, it means that rx(k) = 0 ∀ |k| > 4. Clearly, with a forward

path delay d = 1, 3, ξ̆(ω) > ξ̂(ω) due to biased estimation of ĥ(n).

For a longer enough delay d = 5, ξ̆(ω) = ξ̂(ω).
In the last simulation experiment, we show the dependence be-

tween the forward path gain |F0(ω)| and the PTF values. We again

use the general simulation parameters given in Table 1, only the for-

ward path filter f0 varies so that the |F0(ω)| = 6, 10, 20 dB, respec-

tively. Fig. 5 shows the simulation results for different forward path

gains |F0(ω)|. As expected, a higher forward gain |F0(ω)| gives

lower steady-state PTF values, as expressed in Eq. (10).

6. CONCLUSION

In previous work, PTF approximations have been derived for dif-

ferent adaptive algorithms in open-loop MMSL systems. In this

work, we derived extensions to these PTF expressions for closed-

loop MMSL systems. We showed that this extension provides more

accurate and useful performance predictions of closed-loop AFC

systems, especially if there are strong correlations between the loud-

speaker and incoming signals, and the adaptive filter estimates there-

fore become heavily biased. The results also showed the relations

between the forward path delay/gain in closed-loop systems and the

biased adaptive filter estimates and thereby the PTF prediction val-

ues. This knowledge is important in designing AFC systems and

provides a very useful upper-limit for the forward path gain to guar-

antee system stability in closed-loop AFC systems.

7. RELATIONS TO PRIOR WORK

This work is an extension of the power transfer function analysis of a

multiple-microphone and single-loudspeaker cancellation system in-

troduced in [26]. The extended analysis provides accurate cancella-

tion performance predictions in closed-loop systems even if there is

a strong correlation between the loudspeaker and incoming signals,

see details in the Introduction. The power transfer function analy-

sis is inspired by the studies in [33, 34] of tracking characteristics

for an open-loop single-microphone and single-loudspeaker cancel-

lation system, which is a special case of the presented framework.
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