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ABSTRACT

 

 

Acoustic echo cancellation and feedback cancellation 

systems require robust and computationally efficient 

adaptive filtering techniques. In this paper, a new affine 

projection algorithm with intermittent update of the filter 

coefficients is proposed where the update interval is 

determined according to the adaptation state. Simulation 

results show that the proposed algorithm provides improved 

performance and reduced average computational complexity 

compared with other similar algorithms for acoustic echo 

cancellation and acoustic feedback cancellation applications. 

 

Index Terms—Acoustic echo cancellation, acoustic 

feedback cancellation, affine projection algorithm, variable 

update interval 

 

1. INTRODUCTION 

 

There are many adaptive filtering algorithms proposed for 

echo cancellation [1], [2]. A common challenge for acoustic 

echo cancellation (AEC) systems is the large number of 

adaptive filter coefficients (of the order of hundreds) 

necessary for accurate modeling of the acoustic echo path. 

Acoustic feedback is also a difficult problem encountered in 

hearing aids. The acoustical coupling between the 

loudspeaker and the microphone combined with a high 

amplification is responsible for the feedback. Many adaptive 

feedback cancellation (AFC) techniques have been proposed 

to minimize the feedback effect on the hearing aids [3-6]. 

Adaptation control is difficult because the correlated input 

and feedback signals can lead to a biased filter and severe 

signal distortion at the hearing aid output [7]. 

                                                 

The work of F. Albu and M. Rotaru was supported by a grant of the 

Romanian National Authority for Scientific Research, CNCS-

UEFISCDI, project number PN-II-ID-PCE-2011-3-0097 and by the 

Sectorial Operational Programme “Human Resources Development” 

2007-2013 of the Romanian Ministry of Labour, Family and Social 

Protection through the Financial Agreement POSDRU/107/1.5/S/76813. 
 
The work of R. Arablouei was supported in part by a 

Commonwealth Scientific and Industrial Research organisation 

(CSIRO) scholarship. 

The algorithms for AEC and AFC should provide a 

compromise between fast convergence speed, low 

complexity, low steady-state mean-squared error (MSE), 

and good sound quality. The most commonly used 

algorithm for both applications is the normalized least mean 

square (NLMS) algorithm [1], [2]. Unfortunately, NLMS 

has a slow convergence, especially for colored inputs. The 

recursive least-squares (RLS) algorithm has a fast 

convergence but is often numerically unstable and 

computationally expensive [1]. The performance of the 

affine projection (AP) algorithm [8] lies between those of 

NLMS and RLS. Many fast versions of the AP algorithm 

have been proposed (see [9] for an extended overview of 

their evolution). It is known that there is a bias in the 

estimate of the feedback path in the case of AFC due to the 

correlation between the input and output signals of the 

hearing aids. Several solutions for this problem have been 

proposed based on decorrelation filters [6], [10]-[11]. 

Moreover, different AP algorithms employing variable step-

size [12], variable regularization [13]-[14], set-membership 

filtering [15], and variable projection order [16]-[18] have 

also been proposed. 

An AP algorithm with intermittent update of filter 

coefficients depending on a computed threshold has been 

proposed in [19]. Improved convergence and steady-state 

error has been obtained while reducing the number of 

updates. In this algorithm, the adjustment of the update 

interval depends on a threshold derived from the steady-

state MSE formula given in [20]. However, a better 

estimation of the steady-state MSE has been proposed in 

[18]. Additionally, in [18], the projection order of the AP 

algorithm is varied depending on the adaptation state. For 

this purpose, a linear dependence of the projection order on 

the logarithm of the estimated variance of the filter output 

error is used. The algorithm of [18] was termed AP 

algorithm with selective projections (APA-SP). 

In this paper, we propose to use the MSE estimation 

formula from [18] and adjust the update interval depending 

on the adaptation state in order to derive our algorithm, 

termed intermittently-updated AP algorithm (IU-APA). 

Simulation results demonstrate the superiority of the 

proposed algorithm over the conventional AP algorithm and 

the APA-SP of [18] in several AEC and AFC applications. 
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2. PROPOSED IU-APA 

 

In a system identification problem, an unknown system may 

be identified by using an adaptive filter. For an AEC 

application, both the target system and the adaptive filter 

have finite impulse responses and are defined by the real-

valued vectors   [            ]
  and  ̂    

[ ̂      ̂        ̂      ]
 
, respectively, where superscript 

  denotes transposition,   is the time index, and   is the 

length of the echo path and the corresponding adaptive 

filter. The signal      is the far-end speech that goes 

through the acoustic echo path with impulse response,  , 

and generates the echo signal,            , where 

     [                      ] . This signal is 

picked up by the microphone together with the near-end 

noise signal,     , yielding the microphone signal      
         . The near-end signal can contain both the 

background noise,     , and the near-end speech,     . 
The AP algorithm [8] is defined by the following 

relations: 

                 ̂      (1) 

  ̂     ̂                      (2) 

where      is the a priori error vector,      
[                      ]  is the desired signal 

vector,   denotes the projection order, and   is the step-size 

parameter. The matrix      [        –          
    ] is the input signal matrix and                
  , where   is a regularization factor and   is the identity 

matrix. 

The average computational complexity of AP algorithm 

can be reduced using the intermittent update procedure 

introduce in [19]. Thus, the update equation of (2) can be 

replaced by 

 ̂    {
 ̂                                  

 ̂              
 

            (3) 

where    is the variable update interval at time  . 

We propose to compute    at each time instant by relating 

it linearly to the logarithm of the estimated variance of the 

filter output error, similar to the approach taken in [18] to 

vary the projection order. In this way, we are able to tune 

the update interval according to the adaptation state. 

Consequently, we have 

  ̂              [  
       ]         (4) 

               {            ⌈ ̂ ⌉ } (5) 

where      is the maximum allowed value for    and   
     

is updated as in [18] using a time-varying forgetting factor 

and a moving average window. We set   
       

  where 

  
  is the desired signal variance that, if not known a priori, 

can be estimated during the first      samples as specified in 

[18]. The steady-state MSE,  , is approximated as 

    
 √[          ][                 ] (6) 

where   
  is the variance of the noise signal,     . 

Furthermore,   is given by 

       
      (7) 

where   is computed as 

       {         [               ]}. (8) 

In the proposed algorithm, the update of the filter 

coefficients from (3) is performed only when 

           

and not at every iteration as in (2). The proposed algorithm, 

called intermittently-updated AP algorithm (IU-APA), 

differs from the algorithm proposed in [19] because it uses a 

more accurate formula for predicting the steady-state MSE, 

 , and a different approach for computing the time-varying 

update interval,   . Extensive simulations of the proposed 

algorithm showed that        is a good choice and 

confirmed the similar findings of [19] and [21]. 

The IU-APA can be easily integrated in an adaptive 

feedback cancelation context. More information about these 

systems can be found in [22]. In a hearing aid system, the 

source signal is corrupted by the additive feedback signal 

generated by the output signal leaking to the input. The 

correspondence with the AEC system signals is the 

following: the acoustic source signal corresponds to the 

near-end signal, the feedback signal corresponds to the echo 

signal, and the output signal corresponds to the far-end 

signal. The hearing-loss has to be taken into account in 

order to generate the signals for the adaptive filter; 

otherwise, the algorithm equations are the same. 

 

3. SIMULATION RESULTS 

 

The first simulations were performed in the context of echo 

cancellation, where the input signal is either white Gaussian 

noise or speech. The performance of IU-APA, APA-SP1 

[18], and AP algorithm (APA) was investigated by 

comparing the normalized misalignment and echo return 

loss enhancement (ERLE) curves. The echo path and the 

adaptive filter both had     coefficients. The simulated 

parameters were       ,      ,          , and 

      . The minimum and maximum allowed values for 

the variable forgetting factor are also set to     and     , 

respectively [18]. The misalignment curves of IU-APA, 

APA with     (corresponds to NLMS), APA with     

and APA-SP1 are shown in Fig. 1(a). The tracking ability of 

the algorithms was examined by changing the sign of the 

echo path coefficients after        samples. It can be seen 

that IU-APA has the lowest steady-state error among the 

considered algorithms. It also has the best ERLE 
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performance, followed by APA-SP1 and APA as indicated 

by the curves plotted in Fig. 1(b).  

It can be seen from Fig. 1(a) that IU-APA inherits both 

fast convergence of APA with     and lower steady-state 

error of APA with    . It can also be noticed that the 

tracking performance of IU-APA is almost the same as that 

of APA-SP1 and APA with    . Similar results regarding 

the convergence and tracking abilities were obtained for 

colored signals. 

For the next simulations,     was used for APA. In 

Fig. 2, the input signal is a speech signal. The same 

conclusions as above can be drawn from Fig. 2(a) regarding 

the misalignment performances of the studies algorithms. It 

can be seen from Fig. 2(b) that the ERLE values of IU-APA 

are most of the time higher than those of APA or APA-SP1. 

In Fig. 3, a variable background noise case is considered. 

The SNR decreases to    dB between the samples        

and        while it is    dB otherwise. All the other 

conditions are the same as those of Fig. 2. It can be seen that 

IU-APA has the best misalignment performance. It can be 

noticed from Fig. 3(b) that the update intervals are closer to 

one in the region with high background noise level, 

therefore IU-APA’s performance is closer to that of APA.  

In Fig. 4, the histograms of the updating interval values 

are plotted for the white and speech signal case from above. 

It can be noticed that most of the updating intervals are 

close to the maximum allowed case. Moreover, there are 

more values of      in the white noise case [Fig. 4(a)] 

than in the speech case [Fig. 4(b)]. 

The next simulations investigate the performance of 

APA, IU-APA and APA-SP1 in the acoustic feedback 

context. 

Fig. 4.  The histograms of the computed    values; a) the white input 
signal case of Fig. 1, b) the speech input signal case of Fig. 2, c) the 
speech input and variable background noise case of Fig. 3. 
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Fig. 3.  Performance comparison of APA, APA-SP1, and IU-APA for 

an AEC simulation using a speech signal input and a higher 

background noise between the samples        and       ; a) 

misalignment curves, b) computed    values. 
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Fig. 2.  Performance comparison of APA, APA-SP1, and IU-APA for 
an AEC simulation using a speech signal input; a) misalignment 

curves, b) ERLE curves. 
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Fig. 1.  Performance comparison of APA (   ), APA-SP1, and IU-

APA for an AEC simulation using a white Gaussian input; a) 

misalignment curves, b) ERLE curves. 
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The feedback path was modeled as a finite-impulse-

response filter with    coefficients. The adaptive filter had 

   coefficients too. A constant gain of    dB in the forward 

path and a delay of    were assumed. The other parameters 

are the same as in the above AEC simulations. It can be seen 

from Fig. 5(a) that most of the time, the performance of IU-

APA is superior to APA and APA-SP1. 

Significant average computational complexity reduction 

is achieved using IU-APA in comparison with APA in 

addition to the improved performance. The percentage of 

updates in IU-APA varied from     to     for the 

simulated scenarios. However, IU-APA may need up to 

    more multiplications than APA-SP1 in the AEC case. 

Our simulations have indicated that in order for IU-APA to 

perform well in AFC systems, a good estimation of the 

steady-state MSE is required. 

Fig. 6 shows the misalignment curves of the investigated 

algorithms for a smaller step-size,        , when all the 

other parameters are identical to those used for the 

simulations of Fig. 4. It can be observed that, for small step-

sizes, both IU-APA and APA-SP1 converge slower than 

APA. This indicates that the steady-state approximation of 

(6) is not valid for very small step-sizes. The same 

observations were made for white and colored input signals. 

It is noteworthy that, compared with the traditional APA, 

the proposed algorithm reduces the average computational 

complexity and not the peak computational complexity that 

is almost the same as the peak complexity of its contenders, 

APA and APA-SP1. 

 

4. CONCLUSION 

 

An affine projection algorithm with a variable interval for 

updating the filter coefficients (called IU-APA) has been 

proposed for acoustic echo cancellation and adaptive 

feedback cancellation in hearing-aids applications. It was 

shown that the proposed algorithm outperforms other 

similar algorithms in several cases. 

Future work will be focused on further reducing the 

complexity of IU-APA by using fast filtering techniques and 

variable-projection-order schemes. The extension of the 

ideas of this paper to sign algorithms (e.g., [22]) for AFC 

and AEC systems will be investigated too. 

 

5. RELATION TO PRIOR WORK 

 

The IU-APA adjusts its update interval by establishing a 

linear dependence of the update interval on the logarithm of 

the estimated variance of the filter output error. The work of 

[19] employs the approximate steady-state MSE formula 

proposed in [20]. However, IU-APA uses a more accurate 

steady-state MSE estimation formula proposed in [18] and 

does not utilize the evolutionary approach of [17] and [19] 

for computing the update interval. In addition, application of 

the proposed algorithm to acoustic feedback cancellation 

was considered, which has not been done in the earlier 

studies. 
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