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ABSTRACT

In this paper, we study the time-domain Kalman filter in the con-
text of echo cancellation. We explain the fundamental differences
between the Kalman filter and the recursive least-squares (RLS)
algorithm. Also, we show that the normalized least-mean-square
(NLMS) algorithm has a clear relationship with the Kalman filter.
Furthermore, a simplified Kalman filter is derived and by a judicious
choice of its parameters, this algorithm behaves like a variable step-
size adaptive filter. Simulation results indicate the good performance
of the optimal and simplified Kalman filtering algorithms.

Index Terms— Echo cancellation, Kalman filter, recur-
sive least-squares (RLS) algorithm, normalized least-mean-square
(NLMS) algorithm, variable step-size (VSS) adaptive filter.

1. INTRODUCTION

The Kalman filter is a very interesting signal processing tool, which
is widely used in many practical applications [1]. This algorithm
recursively estimates a set of unknown variables from a set of (noisy)
observations acquired over time. Due to its optimal performance, the
Kalman filter can be used in many system identification problems
[2].

Similarly, the main goal in echo cancellation is to estimate an
unknown system, i.e., the echo path, from the microphone signal
that contains the echo signal corrupted by different types of “noise”
(e.g., the background noise and the near-end speech) [3]. However,
despite its performance, the Kalman filter has been avoided in this
context.

The main objective of this paper is to promote the work by
G. Enzner and his co-authors [4]–[9], and motivate the use of the
Kalman filter (and its variants) in the echo cancellation problem. We
believe that this optimal filter has the potential to become one of the
most interesting choices for this important problem. Therefore, we
give a brief overview of the Kalman filtering for cancelling echoes.

Our contribution is organized as follows. The state variable
model for echo cancellation is described in Section 2. Based on
this model, the Kalman filter is derived in Section 3; here, we also
explain its relationship with the recursive least-squares (RLS) algo-
rithm. In order to reduce the computational complexity, a simplified
Kalman filter is developed in Section 4; also, it is shown that the
normalized least-mean-square (NLMS) algorithm has a clear rela-
tionship with the Kalman filter. Using a judicious choice of its pa-
rameters as shown in Section 5, the simplified Kalman filter behaves
like a variable step-size (VSS) algorithm. Simulation results pre-
sented in Section 6 support the theoretical findings and outline the
appealing performance of the optimal and simplified Kalman filter-
ing algorithms.

This work was supported under the Grant UEFISCDI PN-II-RU-TE no.
7/5.08.2010 and Grant UEFISCDI PN-II-ID-PCE-2011-3-0097.

2. STATE VARIABLE MODEL FOR ECHO
CANCELLATION

Let us consider the echo cancellation scenario, where the micro-
phone (or desired) signal at the discrete-time index n is defined as

d(n) = xT (n)h+ v(n) = y(n) + v(n), (1)

where x(n) =
[
x(n) x(n− 1) · · · x(n− L+ 1)

]T is a
vector containing the L most recent time samples of the input (or
loudspeaker) signal x(n), superscript T denotes transpose of a vec-
tor or a matrix, h =

[
h0 h1 · · · hL−1

]T is the impulse
response (of length L) of the system (from the loudspeaker to the
microphone) that we need to identify, and v(n) is a zero-mean sta-
tionary white Gaussian noise signal. The variance of this additive
noise is σ2

v = E
[
v2(n)

]
, where E[·] denotes mathematical expec-

tation. In the context of echo cancellation, the signal y(n) is called
the echo that we want to cancel with an adaptive filter [3], [10].

In the mentioned application, our objective is to estimate or iden-
tify h with an adaptive filter:

ĥ(n) =
[

ĥ0(n) ĥ1(n) · · · ĥL−1(n)
]T

, (2)

in such a way that for a reasonable value of n, we have for the (nor-
malized) misalignment: ∥∥∥ĥ(n)− h

∥∥∥2

2

∥h∥22
≤ ι, (3)

where ι is a predetermined small positive number and ∥·∥2 is the ℓ2
norm.

The system impulse response can be modeled as a state equa-
tion. In our context, x(n) is the measurement vector and x(n) is
considered as deterministic. Expression (1) is called the observation
equation. We assume that h(n) is a zero-mean random vector, which
follows a simplified first-order Markov model, i.e.,

h(n) = h(n− 1) +w(n), (4)

where w(n) is a zero-mean white Gaussian noise signal vector,
which is uncorrelated with h(n− 1) and v(n). The correlation ma-
trix of w(n) is assumed to be Rw(n) = σ2

w(n)IL, where IL is the
L×L identity matrix. The variance, σ2

w(n), captures the uncertain-
ties in h(n). Expression (4) is called the state equation.

Therefore, the echo cancellation problem may be restated as fol-
lows. Given the two fundamental equations:

h(n) = h(n− 1) +w(n), (5)

d(n) = xT (n)h(n) + v(n), (6)
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our objective is to find the optimal recursive estimator of h(n) de-
noted by ĥ(n). In the context of echo cancellation, the values of
σ2
w(n) play a major role in the performance of the estimator. In-

deed, small values of σ2
w(n) imply a good misalignment but a poor

tracking; while large values of σ2
w(n) (meaning that the uncertain-

ties in the echo path are high) imply a good tracking but a high mis-
alignment. In other words, the values of σ2

w(n) highly determine the
tracking abilities and the convergence of the Kalman filter to be de-
rived. Therefore, there is always a compromise between good track-
ing and low misalignment. As simulations will show, this simplified
model is very satisfactory for the echo cancellation problem.

3. KALMAN FILTER VERSUS RLS ALGORITHM

The Kalman filter can be derived based on the simplified (with re-
spect to the state equation) model presented in the previous section.
In the context of the linear sequential Bayesian approach, the optimal
estimate of the state vector, h(n), has the form [11]:

ĥ(n) = ĥ(n− 1) + k(n)
[
d(n)− xT (n)ĥ(n− 1)

]
= ĥ(n− 1) + k(n)e(n), (7)

where k(n) is the Kalman gain vector and

e(n) = d(n)− ŷ(n) = d(n)− xT (n)ĥ(n− 1) (8)

is the a priori error signal between the microphone signal and the
estimate of the echo signal. Also, the a posteriori error signal is

ϵ(n) = d(n)− xT (n)ĥ(n) = xT (n)µ(n) + v(n), (9)

where

µ(n) = h(n)− ĥ(n) (10)

is the state estimation error or a posteriori misalignment. The corre-
lation matrix of µ(n) is

Rµ(n) = E
[
µ(n)µT (n)

]
. (11)

We can also define the a priori misalignment as

m(n) = h(n)− ĥ(n− 1) = µ(n− 1) +w(n), (12)

for which its correlation matrix is

Rm(n) = E
[
m(n)mT (n)

]
= Rµ(n− 1) + σ2

w(n)IL. (13)

Thus, the a priori misalignment appears in the a priori error signal as

e(n) = xT (n)m(n) + v(n). (14)

The Kalman gain vector is obtained by minimizing the criterion:

J(n) =
1

L
tr
[
Rµ(n)

]
(15)

with respect to k(n). From this minimization, we find that

k(n) =
Rm(n)x(n)

xT (n)Rm(n)x(n) + σ2
v

(16)

and

Rµ(n) =
[
IL − k(n)xT (n)

]
Rm(n). (17)

Summarizing, the following equations define the well-known
Kalman filter [12]:

Rm(n) = Rµ(n− 1) + σ2
w(n)IL, (18)

k(n) =
Rm(n)x(n)

xT (n)Rm(n)x(n) + σ2
v

, (19)

e(n) = d(n)− xT (n)ĥ(n− 1), (20)

ĥ(n) = ĥ(n− 1) + k(n)e(n), (21)

Rµ(n) =
[
IL − k(n)xT (n)

]
Rm(n). (22)

This algorithm has striking resemblances with the classical RLS al-
gorithm [12]. However, contrary to what it may be believed, the two
algorithms are very much different and do not behave the same way
in practice; this is perhaps the reason why the Kalman filter was not
really so deeply studied in echo cancellation except by G. Enzner
[4]. Nevertheless, there are at least four fundamental differences be-
tween these two filters. First, the Kalman filter does not require any
matrix inversion, which is not the case for the RLS (whose inverse
input signal correlation matrix is implicitly calculated at each itera-
tion). Second, the Kalman filter depends explicitly on the correlation
matrix of the misalignment while the RLS adaptive filter depends on
the (inverse) correlation matrix of the input signal. Third, the RLS
does not depend on the variance of the additive noise. Finally, the
RLS does not depend on the uncertainties in h(n) since it is consid-
ered as deterministic in its derivation. The two parameters σ2

w(n)
and σ2

v in the Kalman filter (for which the RLS does not depend on)
allow us to better control it.

At infinity, we have [13]

lim
n→∞

tr
[
Rµ(n)

]
= Lσ2

µ(n), (23)

lim
n→∞

tr [Rm(n)] = L
[
σ2
µ(n) + σ2

w(n)
]
, (24)

where σ2
µ(n) is a small positive number to which all diagonal ele-

ments of Rµ(n) converge. Therefore, the normalized misalignment
as defined in Section 2 should be after convergence:∥∥∥ĥ(n)− h

∥∥∥2

2

∥h∥22
≈

L
[
σ2
µ(n) + σ2

w(n)
]

∥h∥22
, (25)

where h is the acoustic impulse response that we try to identify. It is
instructive to observe how the final misalignment is determined by
the values of σ2

w(n). Also, when σ2
w(n) = 0, we have

lim
n→∞

Rµ(n) = 0, lim
n→∞

k(n) = 0, (26)

and, obviously, the Kalman filter will never be able to track the
changes in h(n). On the other hand, for large values of σ2

w(n),
the Kalman gain vector never goes to zero, which allows the update
equation (7) to stay “alert” to any possible random changes of the
echo path.

4. SIMPLIFIED KALMAN FILTER

Let us assume that the Kalman filter converged to its steady-state.
In this case, Rm(n) tends to become a diagonal matrix with all its
elements equal to a small positive number, σ2

m(n); so we can make
the approximation:

Rm(n) ≈ σ2
m(n)IL. (27)
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As a result, the Kalman gain vector simplifies to

k(n) ≈ kNLMS(n) =
x(n)

xT (n)x(n) + δ(n)
, (28)

where

δ(n) =
σ2
v

σ2
m(n)

(29)

can be seen as a variable regularization parameter. We deduce that
the Kalman filter simplifies to the regularized NLMS algorithm:

e(n) = d(n)− xT (n)ĥ(n− 1), (30)

ĥ(n) = ĥ(n− 1) +
x(n)e(n)

xT (n)x(n) + δ(n)
. (31)

Simulations confirm that with these parameters, the NLMS algo-
rithm behaves the same way as the Kalman filter at the convergence.
Of course, some a priori information on δ(n) is required.

A better possibility is the following. Assume that the update
matrix that appears explicitly in Rµ(n) can be approximated as

IL − k(n)xT (n) ≈
[
1− kT (n)x(n)

L

]
IL. (32)

The previous approximation is reasonable. Indeed, when the filter
starts to converge, the matrix Rµ(n) tends to become a diagonal
one since the misalignment of the individual coefficients tend to
become uncorrelated. As a consequence of (32), the two matrices
Rm(n) and Rµ(n) become diagonal, i.e., Rm(n) ≈ σ2

m(n)IL =
rm(n)IL and Rµ(n) ≈ σ2

µ(n)IL = rµ(n)IL. Then, it is not hard
to deduce that the Kalman filter simplifies to

rm(n) = rµ(n− 1) + σ2
w(n), (33)

δ(n) =
σ2
v

rm(n)
, (34)

e(n) = d(n)− xT (n)ĥ(n− 1), (35)

ĥ(n) = ĥ(n− 1) +
x(n)e(n)

xT (n)x(n) + δ(n)
, (36)

rµ(n) =

{
1− xT (n)x(n)

L [xT (n)x(n) + δ(n)]

}
rm(n). (37)

This simplified Kalman filter, first proposed in [8] and named broad-
band Kalman filter (BKF), behaves like a VSS-type NLMS algo-
rithm. Simulations prove this statement. This algorithm may look
very similar, at first glance, to the one proposed in [14] but the two
are very much different. Indeed, in [14], the echo path is considered
as time invariant so that no state equation is involved; this is equiva-
lent to taking σ2

w(n) = 0, which may be a problem in tracking.

5. PRACTICAL CONSIDERATIONS

There are two parameters that need to be set or estimated within the
Kalman filter (and its simplified version). The first (and perhaps the
most important) one is σ2

w(n), which plays a major role in the overall
performance of the algorithms, as explained in Sections 2 and 3. In
order to evaluate this parameter, let us rewrite (4) as

w(n) = h(n)− h(n− 1). (38)

Using the ℓ2 norm in both sides of (38), together with the approx-
imation ∥w(n)∥22 ≈ Lσ2

w(n) (which is valid when L ≫ 1), and
replacing h(n) by its estimate ĥ(n), we can evaluate

σ̂2
w(n) =

1

L

∥∥∥ĥ(n)− ĥ(n− 1)
∥∥∥2

2
. (39)

The estimation from (39) is designed to achieve a proper compro-
mise between good tracking and low misalignment. When the al-
gorithm starts to converge or when there is an abrupt change of the
system (e.g., when the echo path changes), the difference between
ĥ(n) and ĥ(n− 1) is significant, so that the parameter σ̂2

w(n) takes
large values, thus providing fast convergence and tracking. On the
other hand, when the algorithm starts to converge to its steady-state,
the difference between ĥ(n) and ĥ(n − 1) reduces, thus leading to
small values of σ̂2

w(n) and, consequently, to a low misalignment.
In the case of the BKF [8], the state equation is slightly different

as compared to (4), i.e.,

h(n) = ah(n− 1) +w(n), (40)

where 0 ≤ a ≤ 1 is the transition coefficient. This implies that the
estimation of σ2

w(n) becomes [8]

σ̂2
w(n) =

1− a2

L
E
[
ĥT (n)ĥ(n)

]
. (41)

In general, the value of the parameter a should be chosen very close
to one [8], which could be problematic for the estimator given in
(41). From this point of view, the evaluation of σ̂2

w(n) from (39)
should be more reliable in practice.

The second parameter to be found is the noise power, σ2
v . Usu-

ally, it can be estimated during silences of the near-end talker, i.e.,
in the single-talk scenario [15]. However, this is not always an easy
task. The most critical situation in echo cancellation is the double-
talk case, when the near-end signal is a combination of the back-
ground noise and the near-end speech. In this scenario, the parame-
ter σ2

v(n) can be estimated as proposed in [16] or [17].

6. EXPERIMENTAL STUDY

Experiments are performed in the context of both network and
acoustic echo cancellation. Two echo paths are used: the first one is
the fourth impulse response from G168 Recommendation [18] (with
128 taps); the second one is a measured acoustic impulse response
(with 512 taps). The sampling rate is 8 kHz. All adaptive filters used
in the experiments have the same length as the echo paths. The far-
end signal (i.e., the input signal) is either a white Gaussian signal or
a speech sequence. The output of the echo path is corrupted by an
independent white Gaussian noise with 20 dB signal-to-noise ratio
(SNR). We assume that the variance of the noise, σ2

v , is available
in all the simulations. In order to evaluate the tracking capabilities
of the algorithms, an echo path change scenario is simulated in all
the experiments, by shifting the impulse responses to the right by
12 samples. The performance measure used in simulations is the
normalized misalignment (in dB) evaluated based on (3).

It was shown in Section 4 that the Kalman filter and the NLMS
algorithm behave the same way at the convergence [with a proper
selection of their parameters, see (27) and (29)]. In Fig. 1, the input
signal is a white Gaussian noise and the network echo path is used.
The regularization parameter of the NLMS algorithm is evaluated
according to (29). Constant values of the parameter σ2

w(n) are con-
sidered in this experiment. As we can see, both algorithms converge
to the same steady-state misalignment. In terms of the initial con-
vergence rate, the Kalman filter outperforms the NLMS algorithm;
however, they behave the same way in steady-state and their track-
ing reaction is similar. Also, it can be noticed that a smaller value of
σ2
w(n) leads to a lower misalignment but also to a slower tracking.

This aspect motivates the use of a variable parameter σ̂2
w(n) [see

(39)], which will be involved in all the following experiments.
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Fig. 1. Misalignment of the Kalman filter and the NLMS algorithm. (a)
σ2
w(n) = 10−9. (b) σ2

w(n) = 10−10. The input signal is white Gaussian,
L = 128, and SNR = 20 dB.
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Fig. 2. Misalignment of the Kalman filter and the RLS algorithm using
different values of the forgetting factor λ. Other conditions as in Fig. 1.

In Fig. 2 (using the network impulse response), the Kalman filter
is compared to the RLS algorithm using different values of the for-
getting factor (0 < λ ≤ 1). This specific parameter of the RLS algo-
rithm addresses the compromise between convergence rate/tracking
capabilities on the one hand and misadjustment/stability on the other
hand. It can be noticed that the Kalman filter compromises better be-
tween the tracking capability and steady-state misalignment level, as
compared to the RLS algorithm. To improve the tracking reaction of
the RLS algorithm, the value of the λ should be decreased, but this
increases the misalignment and could affect the stability [19].

In Fig. 3, the simplified Kalman filter (SKF) developed in Sec-
tion 4 is compared to the BKF [8] in the context of acoustic echo can-
cellation. The parameter σ̂2

w(n) is estimated in different ways within
these two algorithms [see (39) and (41)]. We can see that the BKF
gives a lower misalignment level when the value of the parameter a
increases; but its tracking capability is reduced in this case. On the
other hand, the SKF achieves a good compromise between these per-
formance criteria. This algorithm tracks faster than the BKF, while
it also shows a reasonable low steady-state misalignment.

As explained in Section 4, the SKF behaves like a VSS adap-
tive filter. In Fig. 4 (using the acoustic impulse response), the SKF
is compared to the NLMS algorithm using two different values of
the normalized step-size. This positive constant α (usually α ≤ 1)
multiplies the update term of the NLMS algorithm [i.e., the second
term in the right-hand side of (31)], in order to achieve a good com-
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Fig. 3. Misalignment of the SKF and the BKF using different values of the
parameter a. The input signal is speech, L = 512, and SNR = 20 dB.
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Fig. 4. Misalignment of the SKF and the NLMS algorithm using different
values of the normalized step-size α. Other conditions as in Fig. 3.

promise between the convergence rate and misadjustement. It can be
noticed that the convergence rate of the SKF (and its tracking reac-
tion) is similar to the NLMS algorithm using the largest normalized
step-size, while the SKF obtains a lower steady-state misalignment
specific to the NLMS algorithm with a smaller normalized step-size.

7. CONCLUSIONS

In this paper, we have studied the time-domain Kalman filter in the
context of echo cancellation. We have explained the fundamental
differences between the Kalman filter and the RLS algorithm. Also,
it was proved that the NLMS algorithm has a clear relationship with
the Kalman filter. Finally, we have developed a simplified Kalman
filter, which behaves like a VSS adaptive filter. Simulation results
support the theoretical findings, recommending the proposed solu-
tions for real-world echo cancellation scenarios.

8. RELATION TO PRIOR WORK

The work presented here has focused on the study of the time-
domain Kalman filter for echo cancellation with a simplified first-
order Markov model, which seems to work very well in this con-
text. Most of the work by G. Enzner and his co-authors consider the
frequency-domain approach, e.g., [5], [6], [9], except for the BKF
algorithm presented in [8] (and also some treatments in [7]). The
SKF algorithm given in this paper (which has the same structure as
the BKF) uses a different way to estimate the key parameter σ2

w(n).
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