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ABSTRACT

Sinusoidal models are widely used in parametric speech and
audio coding schemes. A common requirement in these ap-
plications is to select only a subset of components that pro-
vide the greatest perceptual benefit particularly at low bit-
rates. Usually, perceptual sinusoidal component selection al-
gorithms make use of greedy algorithms that are computa-
tionally expensive. In this paper, we present a new algorithm
that selects sinusoidal components based on the partial loud-
ness model proposed by Moore & Glasberg. We compare the
performance of the proposed algorithm in terms of perceptual
benefit and computational complexity to other existing sinu-
soidal selection algorithms.

Index Terms— loudness, sinusoidal models, parametric
audio coding, audio coding, auditory patterns

1. INTRODUCTION

Parametric models are widely used in speech and audio cod-
ing algorithms owing to their ability to provide high qual-
ity audio at low bit rates compared to traditional transform-
domain audio coders [1, 2, 3]. For example, the sinusoids +
transients + noise (STN) model decomposes the signal into
sinusoids, transients and noise components in order to ob-
tain compact signal representations [4, 5, 6]. Similarly, the
MPEG-4 audio standard consists of the HILN (Harmonics
and Individual Lines plus Noise) audio coder and the HVXC
(Harmonic Vector Excitation Coding) speech coder, both of
which make use of parametric models and are widely used in
internet streaming and broadcast applications [7]. However,
in low bit-rate applications, only a limited number of parame-
ters from individual parametric models can be encoded. Often
times, it is desired that this limited set of sinusoidal parame-
ters be selected such that the target bit-rate is scalable with
perceptual quality, i.e., a gradual degradation in quality with
decreasing bit-rates is desired. For example, the bandwidth
extension algorithm proposed in [8] determined the impor-
tance of the higher sub-bands based on perceptual criteria.

In this paper, we focus on the sinusoidal parameter se-
lection task where the objective is to select a limited num-
ber of perceptually salient sinusoids from a given set of can-
didate sinusoids. To this end, several perceptual techniques
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Fig. 1. General structure of a sinusoidal component selection
task.

[6, 7, 9, 10] have been proposed in the literature. In [7], the
signal-to-mask ratio (SMR) based criteria was suggested to
select the components. Similarly, an excitation pattern match-
ing algorithm [6] was proposed where the sinusoid whose ex-
citation pattern resulted in the greatest matching (i.e., least
error) to the reference signal pattern was selected. Later, a
closely related technique where sinusoidal component selec-
tion was carried out based on loudness pattern matching was
proposed [9].

Almost all of the above techniques employ iterative al-
gorithms that are greedy in nature. That is, the perceptual
model is employed repeatedly per candidate sinusoid and the
sinusoid maximizing an underlying perceptual criteria is se-
lected in that iteration. This process is repeated until the re-
quired number of sinusoids is selected. This process is com-
putationally expensive and not adequate for practical applica-
tions. To this end, a few computationally efficient alternatives
[10, 11, 12] were proposed. In [11], a pruning approach was
described to evaluate the auditory model stages in a computa-
tionally efficient manner. In [10], a hybrid approach to loud-
ness estimation for sinusoidal signals was proposed to speed
up the sinusoidal component selection task. Specifically, they
speed up the auditory model evaluations that are carried out
repeatedly in every iteration.

In this paper, we propose a computationally efficient al-
ternative that is based on the partial loudness model [13] pro-
posed by Moore & Glasberg. The partial loudness model
calculates the audibility (i.e., loudness) of a signal of inter-
est in the presence of another background signal. At every
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iteration, the proposed algorithm computes the partial loud-
ness pattern associated with the set of candidate sinusoids
(treated as the signal of interest) in presence of the sinusoidal
components that are previously selected (treated as the back-
ground signal). The proposed algorithm then selects the next
sinusoid based on the frequency region that shows the max-
imum partial loudness. While the other excitation/loudness
pattern based approaches employ the auditory model repeat-
edly across all available candidate sinusoids before selecting a
sinusoidal component, the proposed algorithm avoids this ex-
haustive search procedure. Therefore, the proposed technique
is computationally efficient compared to the other component
selection algorithms.

We compare the performance of the proposed algorithm to
that of a loudness pattern matching algorithm [9] for compo-
nent selection. Results indicate that the proposed algorithm
selects > 80% of the same components as that selected by
the loudness pattern matching algorithm. Furthermore, the
proposed algorithm operates at 95% less time than the loud-
ness pattern matching algorithm thereby achieving significant
computational savings.

The paper is organized as follows. In section 2, the details
of the perceptual model are provided. In section 3, the loud-
ness pattern matching algorithm and the proposed algorithm
are described. In section 4, the experimental setup and simu-
lation results are presented. Finally, conclusions are given in
section 5.

2. PARTIAL LOUDNESS MODEL

In this section, a brief overview of the steps associated with
evaluating partial loudness patterns according to the Moore &
Glasberg auditory model [13] is provided.

2.1. Auditory Model

Let x(n) and d(n) denote the signal of interest and the back-
ground signal (”noise”) respectively. The combined signal is
given by y(n) = x(n) + d(n). The input signals are refer-
enced to an assumed sound pressure level (SPL) of P dBSPL.

First, the input signals undergo an outer and middle ear
correction so that the effective power spectrum reaching
the inner ear is P cx(ωj) = |M(ωj)|2Px(ωj) and P cd (ωj) =
|M(ωj)|2Pd(ωj) where |M(ωj)| denotes the frequency re-
sponse of the outer/middle ear filter, Px(ωj) and Pd(ωj)
denote the power spectrum of x(n)and d(n) respectively,

ωj = e
i2πfj
fs and fs denotes the sampling frequency.

Let A denote aD×N matrix where each row of A repre-
sents an auditory filter’s magnitudes at frequencies ωk where
k ∈ {1, ..., N}. Therefore, a set of D auditory filters are em-
ployed as indicated by the number of rows in A. More details
on computing the auditory filter magnitudes can be found in
[14]. Also, the frequency scale is transformed into an au-
ditory scale that is measured in equivalent rectangular band-

width (ERB) units. The ERB scale is related to the frequency
f according to the following relation:

p (in ERB units) = 21.4 log10(4.37f/1000 + 1). (1)

A set of D detectors, {dk}Dk=1 are placed uniformly at 0.1
ERB units along the auditory scale (i.e., |dk − dk−1| = 0.1).
Each detector dk represents the centers of the D auditory fil-
ters employed in A. Next, the excitation patterns ESIG and
ENOISE associated with the input signals x(n) and d(n) are
evaluated as the output of theseD auditory filters to the effec-
tive spectrum reaching the inner ear and is given by:

ESIG = APc
x

ENOISE = APc
d (2)

where the vectors Pc
x, Pc

d represents the effective power spec-
trum of the signal of interest and background signal respec-
tively after outer/middle ear correction.

Finally, the partial loudness pattern of the signal x(n)
in the presence of the background signal d(n) is evalu-
ated. Let ETHRN denote the peak excitation of a sinu-
soidal signal when it is at its masked threshold (in the
presence of the background signal) and ETHRQ denote
the peak excitation when the sinusoid is at its absolute
threshold. Let D1 = {k|ESIG(k) > ETHRN (k)} and
D2 = {k|ESIG(k) ≤ ETHRN (k)} denote the two sets of
locations along the auditory scale where ESIG > ETHRN
andESIG ≤ ETHRN respectively. Then, the partial loudness
pattern at locations D1 is calculated according to [13]:

N ′SIG = C{[(ESIG + ENOISE)G+A]α −Aα}
− C{[(ENOISE(1 +K) + ETHRQ)G+A]α

− (ETHRQG+A)α}
(
ETHRN
ESIG

)0.3

(3)

and the partial loudness pattern at locations D2 (i.e., when
ESIG < ETHRN ) is calculated according to:

N ′SIG = C

(
2ESIG

ESIG + ETHRN

)1.5

((ETHRQG+A)α −Aα){
[(ESIG + ENOISE)G+A]α − (ENOISEG+A)α

[(ENOISE(1 +K) + ETHRQ)G+A]α − (ENOISEG+A)α

}
.

(4)

The indexing by D1 and D2 has been omitted in (3) and (4)
for readability. The values of the constants in (3), (4) are
C = 0.047, α = 0.2, G = 1 and A = 2ETHRQ and K
is a frequency dependent constant. More details regarding the
constants can be found in [13].

3. PROPOSED ALGORITHM

3.1. Auditory Pattern Matching

The auditory pattern matching algorithm [6, 9] makes use of
excitation patterns or loudness patterns in order to select L
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perceptually salient sinusoids out of N (where L < N ) can-
didate sinusoids. The L sinusoids are selected such that the
error between the auditory pattern associated with the mod-
eled signal (containing any set of L sinusoids) and that of the
reference signal (consisting of all N sinusoids) is minimized.

Due to nonlinear operations involved in evaluating the au-
ditory patterns, the optimal solution is usually found through
an exhaustive search procedure. This process is combinato-
rial in nature with O

(
N
L

)
combinations and is therefore com-

putationally intensive. Therefore, several iterative algorithms
[6, 9, 10] have been proposed to carry out the sinusoidal com-
ponent selection task in a computationally efficient manner.

The general idea behind these algorithms is as follows:
In the first iteration, the auditory patterns (either excita-
tion/loudness patterns) associated with each of the N sinu-
soids are individually evaluated and the one that results in
the least error with respect to the reference signal’s auditory
pattern is selected. In the next iteration, each of the remaining
N − 1 sinusoids are individually combined with the selected
sinusoid and the sinusoid that produced the least auditory
pattern error is selected. More generally, in the ith iteration,
each of the remaining N − (i − 1) sinusoids are individu-
ally combined with the i − 1 already selected sinusoids and
the sinusoid that results in the least auditory pattern error is
selected. This process is repeated until all L sinusoids have
been selected. Therefore, the iterative schemes are therefore
associated withO(N+(N−1)+(N−2)+...+N−(L−1)) =
O(NL+L(L− 1)/2) computational complexity. In the next
subsection, we describe the proposed algorithm for perceptual
sinusoidal component selection task.

3.2. Partial loudness based sinusoidal selection (PLSS)

The proposed algorithm makes use of the partial loudness
model described by Moore & Glasberg [13]. In particular,
the proposed algorithm computes a partial loudness pattern
that represents a frequency dependant audibility of a signal
of interest in presence of another background signal. To that
end, the proposed algorithm chooses the set of candidate si-
nusoids as the signal of interest and the set of selected sinu-
soids as the background signal. This ensures that we mea-
sure the loudness contributions from the remaining candidate
sinusoids only. Next, we describe the steps involved in the
proposed sinusoidal selection algorithm.

Let Si, Ci denote the set containing the selected sinusoids
and the candidate sinusoids respectively in the ith iteration
where i ∈ {1, ..., L}. Let Px

i,Pd
i represent the vector of

power spectral components associated with the background
signal, di(n) and the signal of interest, xi(n), respectively.
Also, let Pd

i = g(Si) and Px
i = g(Ci) denotes the fact

that Pd
i, Px

i are frequency domain representation of a sig-
nal containing the frequencies in the sets Si, Ci respectively.
A pseudo-code describing the PLSS algorithm is listed in Al-
gorithm 1.

Input: C1 = {f1, f2, ..., fN}; % signal of interest;
S1 = ∅; %background signal;

i = 1 %iteration index;
while i ≤ L do

1. Compute PLi(k) = PartialLoudness(Px
i,Pd

i)
2. dm =find(PLi = max(PLi));
3. Define window Wm = [dm − 0.5, dm + 0.5]
4. fp = max(Px

i(Wm)
5. Si+1 = Si ∪ fp and Ci+1 = Ci \ {fp}.
6. Px

i+1 = g(Ci+1) and Pd
i+1 = g(Si+1)

end
Algorithm 1: Partial loudness based sinusoidal selection al-
gorithm (PLSS).

Initialy, the set of sinusoids for the background signal is
empty, i.e., S1 = ∅. The set of candidate sinusoids for the
signal of interest contains all the N candidate sinusoids, i.e.,
C1 = {f1, f2, ..., fN}. The partial loudness pattern, PLi(k),
of Px

i in the presence of Pd
i is evaluated according to the

steps described in section 2. The detector location, dm, at
which PLi(k) attains a maximum value is evaluated. A nar-
row frequency region, Wm, in the vicinity of the detector
location dm that spans one ERB unit is defined. That is,
Wm = [dm − 0.5, dm + 0.5]. The sinusoidal component
with the maximum amplitude that falls within the frequency
region defined by Wm is selected for the ith iteration. Let
fp denote this selected sinusoid. The set of frequencies for
the signal of interest and background signal are updated to
Si+1 = Si ∪ fp and Ci+1 = Ci \ {fp} respectively. The
corresponding signals in the frequency domain therefore cor-
respond to Px

i+1 = g(Ci+1) and Pd
i+1 = g(Si+1).

3.3. PLSS vs. Existing techniques

The PLSS algorithm is different from the existing auditory
pattern matching algorithms in the following aspects:

• Firstly, the PLSS algorithm makes use of the partial
loudness patterns instead of the excitation/loudness
patterns used in the existing techniques [6, 9, 10].

• Secondly, the PLSS technique eliminates the repeated
application of auditory model per candidate sinusoid in
any given iteration. Instead, the partial loudness model
is evaluated only once irrespective of the number of
candidate solutions available. In particlar, the PLSS op-
erates at a computational complexity of O(L) instead
of O(NL+L(L− 1)/2) followed by existing auditory
pattern matching techniques [6, 9, 10].

• Most importantly, the frequency dependant partial
loudness pattern computed at every iteration approx-
imates the loudness error metric that is measured by
existing auditory pattern matching algorithms [9, 10]
to select sinusoids.
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Table 1. Component Similarity Measure (CSM).
Audio Number of selected components

Material L=5 L=10 L=15 L=20
Pop 83.4% 85.8% 88.8% 90%

Orchestra 83.8% 87.5% 91.6% 93%
Vocal+Orchestra 88.6% 90.5% 92.3% 92.7%
Solo Instruments 88.4% 92.2% 93.4% 92%

4. RESULTS AND DISCUSSION

In this section, the performance of the proposed techniques
are tested on different types of speech and music signals.

4.1. Experimental Setup

The audio records from the SQAM database [15] were used
to evaluate the performance of the proposed PLSS algorithm.
The audio signals are sampled at 44100 Hz and split into
small segments of size Nf = 1024 samples. Spectral anal-
ysis is carried out using an Nf -point fast Fourier transform
(FFT). Furthermore, the spectral components are referenced
to an assumed sound pressure level (SPL) of 90 dB SPL.

For every segment of audio, a set of sinusoids are ex-
tracted by following the simple peak-picking procedure. The
peak picking procedure selects those components that ex-
hibit a local maxima in the FFT spectrum, i.e., (Px(ωk−1) <
Px(ωk) ≤ Px(ωk+1)). The local maxima’s are picked so
as to ensure that sinusoids are picked across the spectrum,
not just based on their signal power. This set of estimated
sinusoids constitute the candidate set of N sinusoids and the
objective behind the proposed techniques is to select a subset
L (L << N ) of sinusoidal components in a perceptually
relevant manner.

The loudness pattern based sinusoidal selection technique
[9] is used as the reference algorithm to compare the per-
formance of the proposed PLSS techniques. In particular,
we evaluate the PLSS algorithm in terms of the component
similarity measure (CSM), computational complexity and the
residual loudness error (RLE).

The CSM metric measures how many sinusoidal com-
ponents are in common between the two techniques being
compared, i.e., it evaluates whether the PLSS algorithm se-
lects the same sinusoids as the reference algorithm. In Table
1, we list the CSM for different types of audio material for
L = 5, 10, 15, 20 components. It can be observed that the
PLSS technique selects at least > 80% of the same compo-
nents as that selected by the reference algorithm.

Next, we evaluate the computational complexity in terms
of the CPU time associated with the PLSS algorithm and the
reference algorithm. All simulations were performed using
MATLAB on an Intel 2.4 GHz i5-core processor with 4 GB
RAM. Table 2 lists the CPU execution times for the PLSS and

Table 2. CPU execution times for sinusoidal selection.
CPU time (in seconds) Percentage
Reference PLSS Reduction

L=5 16.11 0.79 95.1%
L=10 37.13 1.58 95.74%
L=15 61.09 2.38 96.1%
L=20 87.59 3.24 96.3%

the reference algorithm. Results indicate an average reduction
of 95% in computational time between the PLSS and the ref-
erence algorithm. This is due to the fact that the PLSS algo-
rithm operates at anO(L) computational complexity whereas
the reference algorithm operates at an O(NL+L(L− 1)/2)
computational complexity.

Finally, the residual loudness error is measured between
the modeled signal (with L sinusoids) and original signal
(with N sinusoids) for both PLSS and reference algorithms.
Figure 2 plots the residual loudness error in dB units. The
PLSS algorithm comes very close to the reference algorithm
in terms of the loudness of the synthesized signal.

5. CONCLUSION

In this paper, we proposed a sinusoidal component selection
algorithm based on the partial loudness model developed by
Moore & Glasberg. The proposed PLSS algorithm computes
the partial loudness of candidate sinusoids in presence of pre-
viously selected sinusoids. We show that selecting sinusoids
from frequency regions that exhibits maximum partial loud-
ness in every iteration results in > 80% of similar sinusoidal
selections as that obtained from a loudness pattern matching
algorithm. Furthermore, we show that the PLSS algorithm
operates at 0(L) computational complexity and requires 95%
less time on average compared to the loudness pattern match-
ing algorithm.
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