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ABSTRACT

In this paper we propose a novel representation of the spectral
envelope of speech, using sums of general parametric basis
functions (filter bank), including Gaussian, Hann and Nutall.
The central frequency and bandwidth of each filter can be ad-
justed independently for each speech frame as in conventional
filter bank analysis. The quality of the representation has been
evaluated with respect to a reference spectral envelope ob-
tained from the Harmonic-Stochastic Model [1] (HSM), and
also with respect to parameter time stability and separability
of different acoustic classes. Numerical results show that the
use of the basis functions proposed is an improvement over
pure Gaussian models of the spectral envelope.

Index Terms— spectral envelope representation, spectral
decomposition, parametric functions, speech modeling

1. INTRODUCTION

The estimation of the spectral envelope is an important issue
in describing the speech signal production system. In many
cases, the envelope must be represented using few parameters,
either for achieving a high compression rate or for statistical
modeling. On the other hand, when the speech signal is going
to be reconstructed from the envelope, as is the case in statis-
tical speech synthesis and voice conversion, it is crucial that
the estimated envelope properly represents the vocal tract.

Whereas LPC is the most extensively used method to
compute the spectral envelope of speech signals, Mel-Fre-
quency Cepstrum Coefficients (MFCC) are the most widely-
used spectral envelope representation for speech classifica-
tion tasks (eg.: speech recognition, speaker verification, etc.);
MFCCs can also be used in reconstructing speech with good
results [2]. An alternative model was introduced in [3], where
the spectral envelope is represented as a sum of few Gaussian
basis functions, which are meant to have a good correspon-
dence with spectral formant regions.

The representation of spectral envelope in terms of basis
functions has some advantages over classical models, such as
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LPC or MFCC. For instance, it allows independent instan-
taneous access and modification of each spectral frequency
band, and the simplified use of nonlinear frequency models,
such as perceptual scales. It further allows a time-varying
control of each spectral region, without seriously degrading
the quality of the reconstructed speech signal.

In this paper we analyze different basis functions (filter
shapes) for representing an input speech signal. By impos-
ing different constraints in the estimation algorithm it is pos-
sible to offer a controllable trade-off between accuracy and
efficiency of the method. In Section 2 we formulate the rep-
resentation problem and describe the different basis functions
considered. Several estimation methods to estimate the filters
are presented in Section 2. Constraints on central frequency
and bandwidth can be imposed to get different envelope esti-
mations. Finally, in Section 3 the different filter shapes (basis
functions) and estimation methods are evaluated using several
objective functions: spectral distortion, stability of temporal
evolution and acoustical inter and intra-class distribution of
the parameters.

2. GENERAL BASIS FUNCTION DECOMPOSITION

The representation of spectral envelope using sums of para-
metric functions has been studied in recent literature [4]. The
sum of L general parametric functions is defined as

Ŝ(f ; a, µ, σ) =

L∑
k=1

ψ(f ; ak, µk, σk) (1)

where each component ψ(f ; ak, µk, σk) : R −→ R corre-
sponds to a continuous radial basis function with amplitude
ak, central frequency µk and bandwidth σk, evaluated at fre-
quency f , normalized to lie between −π and π.

Familiar examples of radial basis functions are the Hann,
Nuttall and Gaussian window functions, among others. A par-
ticular class of basis functions based on cosine decomposition
was used in this work, which are defined as

ψ(f ; ak, µk, σk) = ak

M∑
m=0

dm cos(2πm
f − µk
σk

) (2)

if f ∈ [µk − σk, µk + σk], and ψ(f ; ak, µk, σk) = 0 other-
wise. This formulation allows us to select several window-
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shaped functions for the fitting, according to the choice of the
parameters M and {dm}Mm=1, as can be seen in table 1.

Table 1. Some coefficients dk of each respective basis func-
tion.

Function d0 d1 d3 d4

Hann 0.5 −0.5
Nuttall 0.35577 −0.48740 0.14423 −0.01260

Blackman-Harris 0.35875 −0.48829 0.14128 −0.01168
Blackman-Nuttall 0.36358 −0.48918 0.13660 −0.01064

In this work we have also used, for the sake of compar-
ison, other basis functions such as Gaussian window. Two
important requirements for other general basis functions to
be used in this setting, which are true for the above examples,
is that lim

f−→µk±σk

ψ(f ; ak, µk, σk) = 0, so that the sum of all

components is continuous, and that they are differentiable at
all points with respect to the parameters θ = (a, µ, σ), so that
we can apply iterative estimation algorithms. Moreover, we
consider that the partial derivatives with respect to a, µ, σ are
computed within each bandwidth [µk−σk, µk +σk]; and use
zero padding outside this frequency range in the case of bases
originated from periodic functions.

The modeling problem based on radial basis functions is
then to find an approximation Ŝ(f ; a, µ, σ) of a given dis-
cretized function S(f) (i.e. known only at a finite set of fre-
quencies) in such a way that the estimation error is minimal.
In practice, for voiced frames, S(f) corresponds to an un-
known spectrum envelope, whose values can be estimated at
harmonic frequencies S(k f0).

This approximation could in principle be found by any
iterative method, such as Newton or steepest descent, that
fits the sum of basis functions to a smooth version of S(f)
(e.g. a polynomial or spline approximation). However, it is
not hard to encounter practical situations where decomposi-
tion parameters obtained by classical iterative methods do not
change smoothly over successive voiced frames, even though
the spectral envelope changes smoothly. We call such a repre-
sentation temporally unstable. Many applications, as speech
synthesis, require a temporally stable spectral representation,
in which the parameters (ak, µk, σk) of each basis function
corresponding to a spectral subband vary slowly as functions
of time. This work presents some proposals to tackle this
problem, by restricting the positioning of each basis function
ψ(ak, µk, σk).

2.1. Initialization: Greedy Fitting

In many applications it is desired that parameters are esti-
mated within fixed intervals, specially the means of each
component which are usually confined to a set of given fre-
quency bands. Consider a set of L frequency bands centered
on {ck}Lk=1; in the case of sound spectra, the choice of the
set of central frequencies {ck} might take into account our

perceptual system. For instance, the set of central frequencies
used in this work are uniformly distributed with respect to the
Mel scale.

Given a set of central frequencies, we consider a subdivi-
sion of the original spectrum S(f) in spectra Sk(f), defined
by windowing the original spectral signal S using a (win-
dow) function Wk centered on ck. It is usual to assume that∑
kWk ≈ 1, so that

∑
k Sk =

∑
k S ·Wk ≈ S.

Notice that it is possible to define static parameters that
are completely determined by Sk. For instance, by consid-
ering the global peak p = (x, y) of each spectral sub-band
Sk, we can define a0k and µ0

k as y and x respectively, and set
σ0
k so that the area bounded by Sk is the same as that below
ψ(f ; a0k, µ

0
k, σ

0
k). From this setting, it is possible to find the

optimal amplitudes a0k since the estimation error can be mini-
mized using least squares optimization. This approach will be
adressed as Greedy Algorithm in the Section 3. Also, setting
up will be used as initialization step for the iterative approach
presented below, which is based on Marquardt’s algorithm.

2.2. Iterative Fitting Algorithm

The method described here is similar to Algorithm 1.1 in [5],
which considered originally only sums of Gaussian compo-
nents. It consists in a variant of Marquardt’s algorithm [6] that
include the addicional constraint ak > 0 for all k. As opposed
to [7], in which all parameters (ak, µk, σk) ∀k are estimated
simultaneously, we treat each basis function ψ(ak, µk, σk)
separately. The overall algorithm builds the sub-bands Sk and
initializes the parameters for the basis functions according to
the greedy strategy presented above 2.1.

The next step is to refine the component ψ(ak, µk, σk)
that approximates the spectral sub-band Sk using a Base
Fitting Algorithm as follows. Each basis function is
updated iteratively by making (a′k, µ

′
k, σ
′
k) = (ak, µk, σk) +

(δa,k, δµ,k, δσ,k) and by choosing the parameter variations δ
according to

[JTJ]δk = JT [Sk(f)− ψ(f ; ak, µk, σk)],∀f (3)

where

J(ak, µk, σk) =

[
∂ψ

∂a

∂ψ

∂µ

∂ψ

∂σ

]
(ak, µk, σk) (4)

is the Jacobian of ψ(ak, µk, σk). This update corresponds to
optimally fitting a linear model of ψ(ak, µk, σk) to Sk in the
parameter space (a, µ, σ). This iterative update is carried on
until the approximation error, defined by

Ek = ‖Sk − ψ(a′k, µ
′
k, σ
′
k)‖2 (5)

has a negligible variation between successive iterations, i.e. if
∆Ek = |E ′k − Ek| ≤ ε.

The above strategy can be adapted to produce sums of ba-
sis functions approximating S(f) using fewer parameters, in
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order to save representation space. This can be achieved by
fixing some of the parameters µ and/or σ as global values,
and optimizing the remaining parameters, using the reduced
Jacobian matrix with respect to the free parameters in Equa-
tion 3. For instance, if µ is fixed (µk = ck = center(Wk)),
then the reduced Jacobian is J(ak, σk) =

[
∂ψ
∂a

∂ψ
∂σ

]
(ak, σk),

so that δk = (δa,k, δσ,k)T is given by

[J(ak, σk)TJ(ak, σk)]δk = J(ak, σk)T [Sk − ψ(ak, µk, σk)].
(6)

Other expressions have to be modified accordingly, e.g. Ek =
‖Sk − ψ(a′k, σ

′
k)‖2. This variation is called Free-[a, σ], and

one can define analogously the variants Free-[a, µ] and Free-
[a]. For the sake of comparison with these variants, the orig-
inal method will be referred to as Free-[a, µ, σ] in the exper-
imental section. More details of this approach can be found
in [5].

3. EVALUATION

Our aim in the following experimental evaluation is to show
not only the accuracy of the spectral fitting obtained by
the proposed method, but also the temporal stability of the
parameters that represent each basis function component
ψ(ak, µk, σk). We also investigate some properties of clus-
tering speech data based on the use of these parameters.

In all tests, the input is a voice signal composed of six seg-
ments with different vowels pronounced by the same speaker.
The system segments the input signal in frames of 256 sam-
ples and obtains both harmonic and stochastic envelopes from
the HSM model. In the case of LPC and cepstrum (CEPS)
the harmonic and stochastic envelopes are estimated directly
from the harmonic peaks and the log-module spectrum, re-
spectively.

For the method here proposed, the following windows
are used as parametrical bases: Hann, Nutthall, Blackman-
Harris, Blackman-Nutthall and Gaussian. The methods used
in the comparison are the Greedy Method, Free-[a, µ, σ],
Free-[a, µ], Free-[a, σ] and Free-[a]. The spectral envelopes
obtained by these methods are compared to the spectral en-
velopes obtained from Cepstrum and LPC models of similar
size. The threshold parameter used to stop the iterative fitting
algorithm is ε = 10−5. The number of coefficients used in all
methods is 24, with a sampling rate equal to 16 kHz.

The experimental design takes into account the following
issues: the fitting accuracy measured as the distance between
the reconstructed envelope and the true envelope; the stabil-
ity of the dynamic temporal evolution of each model parame-
ter; the distances between speech segments that belong to the
same (artificial) phonetic class; and the distances between the
centroids of these classes.

Comparisons are made frame by frame between the orig-
inal signals s and reconstructed signals ŝ. The fitting accu-
racy considers the overall fitness of the spectral envelope for

each proposed model with respect to a ground truth envelope,
which is the harmonic envelope obtained in the HSM model;
in this preliminary experiment we have used as fitting mea-
sure a normalized version of the Spectral Distortion (SD) be-
tween a given spectral envelope model and the ground truth.
Consider that S[n] corresponds to the original spectrum of the
n-th frame of the input signal s, with n = 1, 2, . . . , N . Then,
we can calculate the fitting accuracy as

E =
1

N

N∑
n=1

∥∥∥S[n]
log − Ŝ

[n]
log

∥∥∥2 (7)

where Slog is a normalized log-spectrum S defined as

Slog = 10 log10(S + ε0) (8)

where ε0 is a value that defines the normalization floor, which
is in our case 10−7.

The stability of the temporal evolution of each parameter
is measured as the sum of distances between consecutive val-
ues of the parameters in each pair of adjacent frames. This
measure basically is associated with discontinuity rate of sig-
nal along the time evolution. If w[n] = (aT , µT , σT )T is the
vector of amplitudes, central frequencies and bandwidths in
frame Ŝ[n], then the temporal stability measure is

Ψ =
1

N − 1

N∑
n=2

∥∥∥w[n] − w[n−1]
∥∥∥ , (9)

i.e. greater stability corresponds to smaller Ψ values.
Figure 1 presents the values of Spectral Distortion E and

stability Ψ for each method.
Among the bases, a visible highlight to the Hann window

is noticed. Figure 1 indicates that this choice combined with
the Free-[a, µ, σ] method exhibits best fitness values, with low
distortion spectral rates and good temporal stability. How-
ever, the Free-[a, µ] method is a better alternative than Free-
[a, σ] for representation using few coefficients. Although the
Greedy method hasn’t achieved highest scores, it stands out
as the most efficient among the proposed methods, since it
does not depend on iterative optimization procedures.

Another property expected from these representation
models is their use as feature vectors describing the input
signal, for instance in tasks such as clustering segments into
(artificial) phonetic classes. Typically an artificial phonetic
class uses the spectral centroid as its primary key. The mea-
sure called within-class scatter [8] for a class with centroid
Ci is defined as

γi =

Ni∑
n=1

∥∥∥w[n] − Ci
∥∥∥2 . (10)

In order to measure how far away are the phonetic classes
from each other, we have used a variation of the Fisher linear
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discriminant, which is defined as

Φ =

∑I
i=1Ni ‖Ci −m‖2∑I

j=1 γj
, (11)

where m is the global mean of all feature vectors of each pho-
netic class. In principle, we want to find models that provide
small values of γ and large values of Φ.

In speech classification the MFCCs are frequently used.
They offer a very good discrimination between sounds and
speaker features. Figure 2 derives a MFCC-like representa-
tion based on the spectral estimation proposed in this paper.
The amplitude values ak (already sampled in log-scale) are
multiplied by σk to get a factor closely related to energy val-
ues of standard MFCC. Finally, the DCT of these values is
computed. The larger Φ values of the transformed parame-
ters confirm that these provide better discrimination than the
original spectral parameters. According to bases selection cri-
terion, the best discriminant features are obtained with Free-
[a, σ]. However, these values should be validated with a larger
and more general test.

4. CONCLUSION

In this paper we have presented an alternative representation
method for the spectral envelope of speech signal segments,
based on sums of general radial basis functions, and the
methods required to compute such representations. Numer-
ical experiments show that it is possible to achieve better
fittings with respect to a reference spectral envelope than
those obtained by LPC, MFCCs and sums of Gaussian com-
ponents. These representations also achieve a better behavior
in terms of temporal stability, with smaller parameter varia-
tion between successive frames of the speech signal.

Preminaries experiments show that the Hann method has
presented the lowest distortion score. Regardless of the in-
dividual comparison among the proposed methods, we can
conclude they are a good alternative for flexible modeling of
the spectral envelope, with individual bank-filter control and
good clustering properties.

Further work will include the application of these repre-
sentation models in speech processing problems, such as pitch
shifting and timbre modification (i.e. voice conversion).
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