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ABSTRACT

Abstract—In this paper a new spectral envelope
estimation method based on radial basis function (RBF)
neural network is proposed for implementing a blind
bandwidth extension method of audio signals. To make
the sub-band envelope of high-frequency (HF)
components accurately recovered, the RBF neural
network is utilized to fit the relationship between low-
frequency (LF) features and sub-band envelope of HF
components. In addition, the fine structure of HF
components which can guarantee the timber of the
extended audio signal is reconstructed based on nonlinear
dynamics. The objective and subjective test results
indicate that the proposed method outperforms the
reference methods.

Index Terms—Audio signal processing, bandwidth
extension, envelope estimation, RBF neural network

1. INTRODUCTION

Sound is an essential medium of communication between
people and environment. In the audible frequency range
of human ear, audio signals can generally be divided into
four classes: narrowband (NB) audio, wideband (WB)
audio, super-wideband (SWB) audio and full-band (FB)
audio. High-frequency (HF) components carry the detail
features of audio signals such as brightness and
naturalness. Due to the limitation of transmission
bandwidth and storage capacity, audio signals are usually
compressed by truncating the HF components in audio
codec. In this case, the quality of the decoded audio
signals will be obviously degraded, and it is necessary to
reconstruct the HF components to realize the transmission
of high quality at low bit-rate. For this reason, audio

bandwidth extension (BWE) emerges as the times require.

By this technique, the HF information can be efficiently
reconstructed. Thus, the audio quality at the decoder can
be improved to a large extent.

Recently, the widely-used BWE techniques are mainly
non-blind. These methods need some HF side information
to reconstruct the discarded HF information, which can
not adapt the requirement of modern mobile audio
communication. Therefore, the blind BWE method [1-4]
becomes the key part of audio codec. It can reconstruct
the HF components without any HF side information and
be compatible with any type of audio codec. The
traditional blind BWE methods estimate the HF sub-band
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envelope only by the low-frequency (LF) ones and ignore
the inherent features of audio signals. Compared to these
methods, RBF neural network takes into account of the
LF features which embody the characteristics of different
audio signals. In this paper, in order to reconstruct the
energy of HF components more accurately, RBF neural
network is used to estimate the HF sub-band envelope. In
addition, the recovery methods of fine structure based on
nonlinear prediction have gotten satisfactory results in
recent years, and nonlinear prediction method [3] of RBF
neural network has been used to reconstruct the fine
structure of HF components in our early works [1-4].
Combining the above technologies, a blind BWE of audio
signals based on RBF neural network is implemented.

The paper is organized as follows: The principles of the
proposed BWE method are described in section 2. The
quality test results are presented in Section 3 and the
conclusions are given in Section 4.

2. NONLINEAR BANDWIDTH EXTENSION OF
AUDIO SIGNALS BASED ON RBF NEURAL

NETWORK
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Fig. 1 Block diagram of the proposed method
The block diagram of the proposed BWE method is shown
in Fig.1. Firstly, WB audio signal sampled at 16 kHz is
up-sampled and low-pass filtered to obtain audio signal
sampled at 32 kHz with bandwidth of 7 kHz. The band-
limited SWB signal is transformed into frequency domain
through Modified Discrete Cosine Transform (MDCT),
and the LF MDCT coefficients are normalized by the root
mean square (RMS) value of each sub-band to get the
fine structure of LF components. Secondly, sub-band
energy of HF spectrum is estimated by RBF neural
networks which have been trained offline from SWB
audio signals. At the same time, the fine structure of HF
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components can be predicted by RBF neural networks
according to nonlinear dynamics. Finally, the spectral
envelope of the extended HF components is adjusted.
Combining with the LF MDCT coefficients below 7 kHz,
all the MDCT coefficients are transformed into time
domain by an inverse MDCT to implement the BWE of
audio signals.

In these modules, HF energy estimation module and
nonlinear prediction module are the main modules which
will be described later in more detail.

2.1. Estimation of the HF Spectral Envelope based on
RBF Neural Network

2.1.1. Introduction of RBF Neural Network

The structure of RBF neural network [5-6] consists of
three layers: the input layer, the hidden layer and the
output layer. In the network training, different audio
would be clustered based on the LF features to estimate
the HF sub-band envelope. The function of the hidden
layer is Gaussian kernel function with the traits of high
nonlinearity, and many hidden layer neurons are
combined to implement the function of nonlinear fitting.

2.1.2. Feature Extraction

In this paper, taking the perception and MPEG-7 timbre
into consideration, 19 features of LF components [2] are
extracted. These features have the correlation with the
HF sub-band energy and can describe the characteristics
of LF components.

The perception-based features are extracted in both
time and frequency domain and the MPEG-7 low-level
audio descriptions depict the spectrum distribution so as
to describe the timber characteristics of audio signals. To
produce a better estimation effect, both kinds of the
features are combined to reflect the characteristics of
different audio signals. The 19 features of LF components
are chosen as follows:

a) Zero-crossing rate: F.. shows the number that audio
signal passes the zero level in each frame which is
given by:

F,. :i\sign(s(n))fsign(s(nfl))l (M

where N~=640 is the number of samples in each frame,

and s(n) is the audio signal in time-domain.

b) Gradient index: F, is the sum of gradients in various
directions of signal and is computed as:

s(m)—s(n-1)]|
1
N

where E represents the energy of current frame, and W¥(n)
is an indicator of signal-changing directions which is
defined by:

¥(n) :% | sign(s(n) — s(n —1)) — sign(s(n - 1) — s(n—2))|  3)

¢) Sub-band envelope: F,,(i), i=1,...,7, is the RMS of
the i sub-band and is computed as:
N,
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where f,.4.(n), n=0,...,279, is the MDCT coefficients of
the first 7 sub-bands in the current frame, N,;,=40 is the
number of MDCT coefficients in each sub-band.
d) Flux of sub-bands: F; represents the amount of local
spectral change and is given by:
7

F, =;\

e) Audio Spectrum Centroid: F, describes the center
of gravity of the log-frequency power spectrum and
is computed by:

F, ()-F, (i-1)] ®)

rms rms

279 f:
=§(logz(1 0007 (©6)
» >p

=0
where f; and p;, i=0,...,279, represent the frequency and
power value of the /" MDCT coefficient, respectively.
f) Audio Spectrum Spread: Fj,s indicates the
distribution of the log-frequency power spectrum and
is defined by:

(N

3 (log Aﬁ) = Fuc)'p,
S
Spectrum Flatness: Fy(i), i=1,...,7, defines the ratio
of geometric average and algebraic average of the
MDCT coefficients in each sub-band which is given

by:
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These features can describe the characteristics of LF
information exactly. Meanwhile the energy of HF
components to be estimated is represented by RMS value
of 7 sub-bands in the frequency range from 7 to 14 kHz.
Here, RBF neural network is applied to fit the LF features
and the HF energy with audio data of the training sets.

2.1.3. Energy Estimation of HF Sub-Band Based on RBF
The RBF neural networks which have been trained by
SWB audio data are used to estimate the HF energy and
the block diagram of spectral energy estimation is

depicted in Fig.2.
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Fig. 2 Block diagram of HF energy estimation
At the training stage, a fifteen-minute-long SWB audio
signal is used to extract the 19 LF features and the HF



sub-band envelope F,,. All these features are computed

to form the SWB vector Y={F..,, Fg, F}; Fusc> Fuss Fofs Flon,

Fhigh }T: where st :{st(i)a i=1""’7}T: Fluw:{Frms(i):
i=1,...,7}" and Fjy={F,(i), i=8,...,14}". Because the
training of RBF neural network is limited by the sample
number, all these SWB vectors are used to obtain the
codebook based on LBG_ method used for vector
quantization [7]. The training samples of RBF neural
networks can be constructed from the codebook.

In consideration of the single output structure of RBF
neural network, the values of sub-band envelope in
different frequency range are taken as the expected output
individually to form 7 groups of training samples. In that
case, seven RBF neural networks are trained to estimate
different sub-band envelope of HF components.

Four structural parameters of RBF neural networks
can be calculated by the input vectors of the training
samples. They are the number of neurons in input layer
and hidden layer, the center and width of each neuron in
hidden layer. Besides, in order to estimate different sub-
band envelope of HF components, the weights between
hidden layer and output layer of these RBF neural
networks must be calculated, respectively. The
parameters and weights can be obtained with the
following steps:

1) Extract the LF features in each code word to
construct the 19-dimension input vector of the
training sample. The clustering centers of the input
vectors are achieved by the K-means algorithm and
chosen as the centers of neurons in the hidden layer.
The number of neurons in the input layer is
determined by the dimensions of input vector and
the number of neurons in the hidden layer is
determined by the number of clustering centers.
Calculate the width of each neuron in hidden layer
by equation (9):

2)

L

V2N,

where L, is the maximum Euclidean distance between
two input vectors in the same clustering center, N, is the
number of input vectors in each clustering center.
So far the structural parameters have been calculated.

Calculate the weights for estimating F,,,,(8).
The value of F,,,(8) in each code word is taking as the
expected output of sample, and combining with the 19-
dimension input vector in the same code word to
construct the training samples of F,,,(8). These samples
are utilized to calculate the weights between hidden layer
and output layer based on Minimum Mean Squared Error
(MMSE). The function of the hidden layer is Gaussian
kernel function, so the output of the RBF neural network
can be calculated as:

)

3)

N1 1
v =2 w exp(-—5
j=0 o,

(10)
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where N is the number of the hidden layer, w; is the
weight between hidden layer and output layer.

Let p;; as the output of hidden layer, the equation (10)
can be simplified as:

N-1 11
V=W, 1D
=0
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The sum of squared error is computed as:
M
Erpr = Z (s; — y1)2
j=0

where M is the number of training samples, s; is the
expected outputs of the RBF neural network.

In order to minimize the mean squared error, the
weight w; is derived and written in the matrix form which
is given by:

(12)

w=(p'p)'p's 13)
where w and s represent the column vector composes of
the weight w;and the expected output s;, respectively. p is
a NxM matrix corresponding to the output p; of the
hidden layer.

So far the weights of the RBF neural network for
estimating F,,,(8) have been calculated
4) Calculate the weights for estimating F,,,(9)~ F.,(14)

in the same way of F},,,(8).

5) Record the structural parameters and 7 groups of
weights for estimating corresponding sub-band
envelope of HF components.

By utilizing the network parameters and 7 groups of
weights obtained from training, the sub-band energy of
HF components can be estimated by the following steps:
1) Calculate the LF features of the WB audio in each

frame, and form the LF features vector in the same

order as the input vector of RBF neural networks
when they are trained.

Construct 7 network models with the structural

parameters and 7 groups of weights, respectively.

Estimate the sub-band envelope of HF components

in the current frame by taking the LF features vector

of each frame as input.

So far the sub-band envelope of HF components can be

estimated.

2)

3)

2.2. Nonlinear Prediction of Fine Structure based on
RBF Neural Network

Some studies have proven that the spectral series of audio
signal has the obvious characteristics of chaos [§]. In that
case, the theory of nonlinear dynamics can be used to
process the audio signal in frequency-domain. In order to
get more accurate test results of this envelope estimation
method, the fine structure of the HF spectrum is predicted
by the same method of our early work [3]. The main steps
are as follows:

1) Transform the WB audio signal of each frame into
frequency domain through MDCT, and the N,
MDCT coefficients are normalized by the RMS
value of each sub-band.

2)  Process the MDCT coefficients by the theory of

nonlinear dynamics. In order to reconstruct the
phase space, the de-biasing autocorrelation method
and False Nearest Neighbors (FNN) method are
adopted to calculate the embedding time delayz and
the embedding dimension m, respectively. Thus, the
one-dimension MDCT series x(k), k=1,2,..., N,,
can be reconstructed to obtain m-dimension phase
point X(n)={x(n)x(n+7),... x(n+(m-1)7)}, n=1,2,...,
N, -(m-1)z.



3) Calculate the clustering center with the K-means
algorithm according to all the phase points, and get
the width of each neuron in hidden layer by equation
9).

4) Let each phase point as the signal of input layer, and
take the MDCT coefficients after the last dimension
of each phase point as the expected output. Thus,
N,,-(m-1)z-1 training samples can be obtained. Train
the RBF neural network by equations (10) ~ (13) to
calculate the weights between hidden layer and
output layer.

5) Regard the last phase point as the input, and the
output value of RBF neural network as the
prediction of the (N,+1)" coefficient. In this way,
the new phase point X(V,-(m-1)z+l) can be
constructed by utilizing the new MDCT coefficient.

6) Repeat the 3, 4, 5 steps to estimate the next HF
MDCT coefficient until all the HF MDCT
coefficients are obtained.

So far the fine structure of HF components can be
reconstructed.

3. PERFORMANCE EVALUATION

In order to evaluate the performance, the proposed
algorithm is compared with two kinds of blind audio
BWE methods: the original RBF neural network method
[3] which estimates the sub-band envelope of HF
components by Linear Extrapolation (LE) and the
maximum Lyapunov prediction method (MLP) [4]. The
audio signals used for objective and subjective tests are
derived from violin, trumpet, drum, guitar and symphony.
The objective quality test of PEAQ [9] which is designed
according to ITU-R BS.1387 standard was adopted. The
scores of the PEAQ test is Objective Difference Grade
(ODG) in the range from -4 (very annoying) to 0
(imperceptible difference). The subjective quality test was
performed by A/B listening test. 12 listeners participated
the A/B listening test. The objective evaluation result is
given in Table 1 and the subjective test results are listed
in Table 2 and Table 3 respectively.

Table 1 PEAQ comparisons results

Table 3 Table 2 A/B test comparison between original RBF and
the proposed method

Preference| Prefer original |Prefer proposed method| No preference

16.7% 50.0% 33.3%

[Percentage,

ODG
Original RBF|  MLP Pr;‘zzﬁzzd

Violin -2.810 -2.804 -2.338
Trumpet -3.273 -2.986 -2.300
Drum -3.034 -2.878 -2.526
Guitar -3.535 -3.418 -2.726
Symphony -2.936 -2.825 -2.162
harmonica -3.140 -2.731 -2.455
speech -3.133 -2.653 -2.307

Table 2 A/B test comparison between MLP and the proposed

method
Preference| Prefer MLP | Prefer proposed method [No preference|
Percentage 25.0% 58.3% 16.7%

The objective quality test and the subjective listening
test results indicate that the proposed method outperforms
the other two nonlinear BWE algorithms.

4. CONCLUSIONS

A blind BWE method from WB-to-SWB audio signals is
proposed in the paper. RBF neural network is used to
estimate the sub-band envelope of HF components
effectively by fitting the relationship between LF features
and HF sub-band energy. Moreover, the fine structure of
HF spectrum is reconstructed according to the nonlinear
characteristics of audio signal. Thus, the blind bandwidth
extension is realized. Both the objective and subjective
test results demonstrate that the proposed BWE method
outperforms the reference BWE algorithms.
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