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ABSTRACT

In this paper, we focus on setting up a gunshot detec-
tion system with high detection performance, robustness
to noise and low computational complexity. To achieve
these objectives, we formulate a two-stage approach with
a less costly impulsive event detection framework fol-
lowed by a relatively more complex gunshot recognition
stage. To improve detection performance of the gun-
shot recognition stage, we propose a template matching
measure in conjunction with the eighth order linear pre-
dictive coding coefficients to train a support vector ma-
chine classifier. Using an extensive audio database, we
were able to achieve a better gunshot recognition perfor-
mance than with the well-known existing features used
for gunshot detection.

Index Terms— Gunshot detection systems, Acous-
tic signal processing, Event detection, Support vector
machines, Template matching

1. INTRODUCTION

Acoustic gunshot detection systems have been proposed
as a tool for the law-enforcement agencies to detect and
report gunfire. In addition, such systems also have mili-
tary applications where they could allow soldiers on the
battlefield to not only detect, but also localize enemy fire.
Different characteristics of a gunshot audio signal can be
exploited for detection of a gunshot acoustic. A gunshot
acoustic consists of a muzzle blast that lasts for about
three milliseconds, sound of mechanical action associated
with operation of a firearm and possibly a shockwave
when the bullet is travelling at supersonic speed [1].

A field employable gunshot detection system should
have a high detection rate, minimal false alarm rate, ro-
bustness to background noise, and low processing time.
Unlike some of the past work that is focused on maxi-
mization of gunshot detection performance [2][3][4], the
focus of our work is on the system-level design of a field
employable gunshot detection system that exhibits all
the aforementioned qualities. To decrease computational
complexity, we propose a multi-level system architecture
consisting of an impulsive event detection block followed
by a gunshot detection block. The event detection block

ensures that the more complex gunshot detection block
is activated only in the case of an acoustic event. Thus,
because of the high complexity of feature extraction al-
gorithms in the gunshot recognition stage, the objective
of the event detection block is to minimize computa-
tional load on the succeeding stage. But, the decrease
in computational complexity comes at a cost: lower the
sensitivity of the event detection stage, lower the com-
putational load on the succeeding gunshot recognition
stage but higher the missed event detection rate and vice
versa. Thus, a trade-off between computational complex-
ity of the system and missed event detection rate has to
be made in the event detection stage. Three impulsive
event detection schemes are proposed in [5] that depend
on evolution of power sequence obtained from incoming
audio signal segments. One of these methods, that uses a
noise-adaptive threshold on the power sequence for pulse
detection, provides a nice compromise between detection
performance and system response delay [5]. Though this
method allows tuning of the threshold with sensitivity of
the scheme, there is no way to set the threshold to meet
any particular missed event detection rate requirement.
Modeling the energy of a signal segment as either chi-
square or non-central chi-square distributed, we build an
analytical framework on top of this impulsive event de-
tection method such that the event detection threshold
can be set to precisely meet any missed detection rate re-
quirement while minimizing computational load on the
more complex feature extraction stage.

When a particular audio segment is flagged by the
event detection block, it is passed to the gunshot recog-
nition stage. The problem of gunshot recognition is par-
ticularly difficult due to the countless possibilities of non-
gunshot impulsive audio events in the operating environ-
ment. The recognition system should be able to distin-
guish a gunshot from sounds such as that of a clap, door
slam, fire-cracker etc. It is important to have the false
positive rate as low as possible, since a high false posi-
tive rate may lead to lower productivity and lack of confi-
dence for law enforcement personnel in gunshot detection
systems [6]. In recent work, an audio event detection sys-
tem using two parallel Gaussian mixture model (GMM)
classifiers has been proposed for the detection of screams
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and gunshots [2]. The gunshot detection problem has
also been pursued as a maximization task employing a
dynamic programming solution to the detection problem
[3]. More recently, the use of correlation against a gun-
shot template has been proposed by Freire and Apoli-
nario [7]. The superior performance of this detection
feature was then reported under noisy environments in
comparison with other known methods of gunshot de-
tection [4]. However, we have found in our experiments
that even though the correlation method of [7] gives a
high true positive rate (TPR), it yields an undesirably
high false positive rate (FPR). As a means of reducing
this FPR, we propose using cross-correlation maximum
against a gunshot template in conjunction with eighth
order linear predictive coding (LPC) coefficients [8] as
features with a gaussian radial basis function (RBF) Ker-
nel for a support vector machine (SVM) classifier [9].
Using an extensive audio database consisting of gunshot
recordings, door slams, ticks, and human voice for an
eight-fold cross validation experiment, we were able to
achieve a 97.62% true positive rate and a negligible false
positive rate on our audio database.

Thus, our contributions towards building a field de-
ployable gunshot detection system are two-fold: First,
we provide an analytical framework for a segment power
based event detection framework that allows us to meet
the missed detection rate requirements of the event de-
tection stage while minimizing computational load on the
gunshot detection system. Second, we propose the use of
SVMs with template correlation maximum, LPC coeffi-
cients and the kernel trick to get high gunshot detection
rate while minimizing the FPR.

2. ACOUSTIC EVENT DETECTION

The event detection task over an audio segment can
be formulated as a binary hypothesis testing problem:

H0: segment contains noise only
H1: segment contains an acoustic event

The audio signal segment at time t can be written as

r(t) = hs(t) + n(t) (1)

where h = 0 under hypothesis H0 and h = 1 under
hypothesis H1, s(t) represents the acoustic event and
n(t) represents zero-mean additive white gaussian noise
process with power spectral density N0

2 .
Over a sampling period T , we use the normalized

received signal energy given by

Z =
2

N0

∫ T

0

r2(t) dt (2)

as a decision statistic. According to [10], Z follows a chi-
square distribution with 2WT degrees of freedom under
hypothesis H0, where W is the positive bandwidth of

the received signal. Alternatively, under hypothesis H1,
Z follows non-central chi-square distribution with 2WT
degrees of freedom and a non-centrality parameter 2γ,
where γ is the signal-to-noise (SNR) ratio of the received
signal [10]. Defining a = TW , the probability density
function of the decision statistic Z can be given as

fZ(z) =

{
1

2aΓ(a)z
a−1e−

z
2 H0,

1
2 ( z

2γ )
u−1
2 e−

2γ+z
2 Iu−1(

√
2γz) H1.

(3)

where Γ(.) is the gamma function and In is the nth or-
der modified Bessel function of the first kind [11]. The
probability of missed detection and false alarm are

Pm = Pr(Z < λ|H1), (4)

Pfa = Pr(Z > λ|H0), (5)

respectively, where λ is the decision threshold on the
energy statistic Z. Using (3), we obtain

Pm = 1−Qa(
√

2γ,
√
λ ), (6)

Pfa = 1−
γ(a, λ2 )

Γ(a)
=

Γ(a, λ2 )

Γ(a)
, (7)

where Qa is the generalized Marcum Q-function [12],
γ(., .) is the lower incomplete gamma function and Γ(., .)
is the upper incomplete gamma function [11].

The performance of the event detection block can be
characterized by Pfa; the lower the Pfa, the lower the
number of false events reported to the gunshot recogni-
tion block and lower is the computational load on the
more complex feature extraction stage. However, a more
critical parameter associated with event detection is the
missed detection rate (Pm). Events missed in the event
detection stage are lost, whereas falsely reported events
can still be removed in the gunshot recognition stage.
Our design philosophy for the event detection scheme is
to set the decision threshold λ to meet a constant missed
detection rate (CMDR) requirement, so that the optimal
trade-off between Pm and Pfa can be achieved under sys-
tem constraints on Pm. From (6), it can be observed that
λ can be set so that the CMDR requirement is always
met, given that the SNR can be estimated (as described
next). We design our event detection scheme such that
only the events with segment signal energy above a fixed
minimum value of Esmin are detected. This value Esmin

would depend on the coverage radius of the detection
system, minimum sound pressure level at the gunshot
source, and gain of the microphone. Noise energy En
can be estimated using a long-term median filter on en-
ergy values of the previous audio signal segments [5]. The
length of the median filter can be decreased so that the
detection scheme responds to impulsive events only.
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Given an En estimate, the SNR is estimated on the
basis of worst case segment power Esmin under hypoth-
esis H1. Thus, the decision threshold λ can be set on

the basis of a CMDR and SNRmin =
Esmin

En
by finding

numerical solution for λ from (6). Our scheme ensures
that a CMDR requirement for the event detection stage
is always met, given that segment power remains above
Esmin under hypothesis H1.

3. SVM-BASED GUNSHOT RECOGNITION

Audio segments flagged by the event detection stage are
passed onto the gunshot recognition block. In this sec-
tion, we describe the audio features, the classification
method, and the experimental setup we’ve used to eval-
uate performance variation of the gunshot recognition
system with different feature combinations and kernel
types.

Let the flagged segment comprise of N samples, with
each sample denoted by xf [n], n = 0, . . . , N − 1. Let
t[n] denote the samples of the template, where the tem-
plate segment is zero-padded to make sure that it also
comprises of N samples. The flagged segment, as well
as the template are normalized between 1 and -1 before
calculating the cross-correlation as

R(m) =

{∑N−m−1
n=0 xf [n+m]t[n] m ≥ 0,∑N+m−1
n=0 xf [n]t[n−m] m < 0.

(8)

The cross-correlation maximum for the flagged segment
is found by picking the maximum R(m). Other features
extracted from the flagged segment for comparison are
the eighth order Linear Predictive Coding (LPC) coef-
ficients and the first 13 Mel-Frequency Cepstral Coeffi-
cients (MFCC) [8]. LPC coefficients are calculated using
MATLABs Signal Processing Toolbox, and MFCC coeffi-
cients are calculated using the auditory toolbox by Inter-
net Research Corporation [13]. The aforementioned fea-
tures were extracted from our audio database to evaluate
gunshot detection performance of the different feature
types. Once a database of relevant feature sets corre-
sponding to both gunshot and outsider signals was built,
eight-fold cross-validation [14] was used to train and test
SVMs. More details about the experimental setup are
mentioned in Section 4.

4. EXPERIMENTAL EVALUATIONS

In this section, we describe the specifics of our audio
database, the computational gain of the even detection
scheme, and the detection performance of the different
feature sets introduced in Section 3.

4.1. Data Acquisition
We acquired an audio database of gunshots by making
recordings at a local firing range using a standard PC

sound card. An extensive database of G3 and MP5 gun-
shots was acquired for different shooter distances of 100
meters (m), 200 m, and 300 m. All audio signals were
sampled at 44.1 kHz with 8-bit quantization. Moreover,
sounds like claps, door slams, ticks, and random people
talking were recorded to be used as outsider signals for
the gunshot recognition system. In all, our acquired au-
dio database amounted to 434 audio clips consisting of
332 gunshot and 102 outsider signals1.

4.2. Evaluating Event Detection Stage
In this section, we use the analytical results derived in
Section 2 to evaluate performance of the event detection
stage. The event detection stage is designed such that
given a value for Esmin , the detection threshold adapts
with the noise power estimate via SNRmin such that a
constant missed detection rate is maintained. However,
the computational gain of this stage is directly linked
with the false alarm rate; the lower the false alarm rate,
the lesser the load on the more complex gunshot recog-
nition stage. Using numerical solutions to (7), we plot
in Figure 1 the false alarm rate variation of the event
detection stage with the system parameter SNRmin for a
given missed detection rate of 5% and an audio segment
size of 1300 samples. The figure shows that the false
alarm rate drops to about 67% at a SNRmin of 15 dB,
and about 2% at a SNRmin of 20 dB, which is not an
uncommon SNR value in gunshot detection systems.
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Fig. 1. Performance evaluation of event detection stage
with SNRmin.

4.3. Evaluating Gunshot Recognition Stage

We devised separate experiments to evaluate perfor-
mance of cross-correlation maximum, LPC coefficients
and MFCC features for gunshot recognition. Once a
database of relevant feature sets corresponding to both

1The audio database we used to run our experiments is available
at http://adcom.lums.edu.pk/gunshotdatabase.html
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gunshot and outsider signals was built, eight-fold cross-
validation [14] was used to train and test SVMs. In
particular, a separate eight-fold cross-validation exper-
iment was devised for LPC coefficients and MFCCs.
Each dataset was divided into eight subsets. In turn,
seven subsets were used to train the SVM classifier and
the remaining one was used to test it. However, for fair
comparison with [4], the cross-correlation feature was
tested with a threshold only.
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Fig. 2. Histogram of cross-correlation maxima of 434
audio clips with a gunshot template.

To compare the performance of the different feature
sets, we used the average TPR and FPR as measures
of classification accuracy. Average TPR is defined as
the percentage of gunshots classified as gunshots in the
testing subset as an average over the eight turns of the
cross-validation test. Similarly, average FPR is the per-
centage of outsider signals classified as gunshots in the
testing subset as an average over the eight turns of the
cross-validation test. The results of the aforementioned
three experiments are shown in Table 1. Though corre-
lation based template matching has been proposed as a
high performance gunshot detection algorithm in [7] [4],
it gives a high FPR with our database. Moreover, Fig-
ure 2 shows the inseparable overlap in cross-correlation
maxima of gunshots and outsider signals with a gun-
shot template. Thus, we need to use more feature(s)
along with cross-correlation maximum to separate gun-
shots and outsider signals in the feature space. From Ta-
ble 1, it can be seen that LPC coefficients give a relatively
higher average TPR while correlation-based feature gives
a relatively lower average FPR. The two features are
then used together with SVMs to get a better average
TPR and FPR simultaneously. The results indicate that
even though we improve the TPR, the false alarm rate of
8.33% is still too high for practical purposes. So, we try
out the kernel trick with our combinative feature set. In
Table 2, we show that LPC coefficients, cross-correlation

maximum and RBF kernel can be used together with
SVMs to obtain a 97.6% TPR and a negligible average
FPR 2. For comparison, we display results for the other
features too when used with the RBF kernel. For these
experiments involving use of the RBF kernel, the ker-
nel parameter and the penalty parameter were optimized
using the grid-searching algorithm [15]; different pairs of
kernel parameter and penalty parameter were tested and
the one which gave the best detection performance in the
eight-fold cross-validation was used to generate results.
The use of cross-validation ensured that the classifier did
not over-fit to the training data.

Feature
Set

Classifier TPR FPR

Cross-correlation
maximum [7]

Threshold 94.580 8.824

MFCC SVM 97.321 50.000
LPC SVM 99.702 11.458
LPC + Cross-
correlation

SVM 99.702 8.333

Table 1. Classification accuracy (as percentages) for
different feature sets with linear kernel and SVMs

Feature
Set

TPR FPR

MFCC 92.497 15.625
LPC 96.429 1.042
Cross-correlation
maximum

97.917 10.417

LPC + Cross-
correlation

97.619 ∼ 0

Table 2. Classification accuracy (as percentages) for
different feature sets with RBF kernel and SVMs.

5. CONCLUSION

In this paper, we have proposed a gunshot detection sys-
tem with high gunshot detection performance, robust-
ness to noise and low computational complexity. Our
proposed analytical framework for event detection en-
ables minimization of computational complexity of the
system without escalating the chances of missing out
on acoustic events. Moreover, we showed that template
matching cannot be used alone for gunshot classification
because of the high FPR. Instead, we propose to use the
template matching feature in conjunction with eighth or-
der LPC coefficients and gaussian RBF kernel to train
SVMs for gunshot detection.

2Of the 102 outsider signals we tested with LPC + Cross-
correlation, we did not get any false positive.
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