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ABSTRACT

This paper presents the classification of speech under stress and
cognitive load in speech recordings of Urban Search and Rescue
(USAR) training operations. The type of stress encountered in the
USAR domain, more specifically in the human team communica-
tion, includes both physical or psychological stress and cognitive
load. We were able to annotate and identify these two types of stress
in recordings of real USAR training operations. Different acoustic
features are extracted at full and subband level, SVM and adaptive
GMMs are used as classifiers. Two strategies to improve the clas-
sification of speech under stress, in particular physical stress, are
proposed. We have achieved a classification accuracy of 74% for
three very unbalanced classes (physical stress, cognitive load and
neutral), with 82% classification of physical stress.

Index Terms— stress, cognitive load, feature extraction, sub-
band processing, speech classification.

1. INTRODUCTION

Rescue work in Urban Search and Rescue (USAR) operations is a
physiologically, cognitively, and psychologically demanding task [1,
2]. Although USAR team members are skilled and highly trained
people, they might be affected by stressors like: difficult perception
(due to darkness, smoke or dust), lack of reliable communications,
time pressure, cognitive fatigue, or emotional demands [1]. Thus, the
type of stress encountered in the USAR domain, more specifically in
the human team communication, includes both cognitive load and
physical or psychological stress. Cognitive task load and affective
task load have been identified in [2] as important factors to recognise
critical states in geo-collaboration teamwork. In the USAR domain,
identification of levels of cognitive load and affective task load in
the form of physical stress, can be used to improve the mechanisms
for scheduling and allocation of tasks. Although cognitive load and
stress are two concepts that describe similar process [3], these two
types of stress can be measured using physiological sensors [4, 5],
but also through speech analysis [6, 7]. In the USAR domain, where
complex rescue operations take place, it would be advantageous to
use unobtrusive methods like speech analysis to detect stress.

Several studies have reported the analysis and classification of
various levels of cognitive load and stress in different situations us-
ing speech analysis. In [8] a monitor system that evaluates indicators
of fatigue and excessive demand on speech of both traffic controllers
and pilots is proposed; in [9] the effect of three different types of
cognitive load on speech prosody of pilots performing a task in a
flight simulator is analysed; in [10] the speech produced by subjects
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while driving in a simulator at variable speed and engaged on men-
tal tasks of variable cognitive load, is classified according to various
stress categories. Most of the works on cognitive load and/or stress
classification, concentrate the analysis in only one type of stress and
use data recorded in controlled experiments or simulations. Very
few works report analysis of real data, for example: in [11] a cor-
pus extracted from the cockpit voice recorder of a crashed aircraft is
studied; in [12] recordings of drivers’ speech under cognitive load
and frustration are analysed; and in [13] very noisy helicopter cock-
pit speech recordings are analysed.

In this paper we classify both physical stress and cognitive load
in noisy speech data collected during USAR training sessions. We
propose a two steps classification approach, where appropriate fea-
tures are selected to train two classifiers working in tandem, one for
classifying physical stress and another for classifying cognitive load.
We show that a two step classification approach, gives better results
than only one classifier trained with thousands of features. In the
following, first we review robust acoustic features to classify either
stress or cognitive load. Then we describe the data and stress anno-
tations (Section 3) and the full band and subband acoustic features
used in this study (Section 4). Classification experiments are pre-
sented in Section 5 and conclusions and future work in Section 6.

2. ROBUST ACOUSTIC FEATURES FOR STRESS AND
COGNITIVE LOAD CLASSIFICATION

One approach that has been shown to be robust for analysing speech
under stress in real situations is the multi-band processing of speech.
Hansen et al. [7] have developed an acoustic measure based on
multi-band non-linear processing of speech: the autocorrelation en-
velope of the critical band filtered Teager Energy Operator (TEO-
CB-AutoEnv). This measure has been used to recognise simulated
and actual speech under stress from the SUSAS database [14]. Cep-
stral coefficients extracted at subband level in [15], are also shown to
be robust for classifying several levels of cognitive load in the pres-
ence of noise. Combination of features has also been investigated: in
[8] TEO-CB-AutoEnv, prosody, voice quality and spectral features
are combined to monitor stress in speech from air traffic controllers
in a simulation experiment. Mel frequency cepstrum coefficients
(MFCCs) and TEO-CB-AutoEnv features are also combined in [16],
in a fusion scheme that improves physical stress classification in a
controlled experiment.

In a previous work [17], we have analysed the acoustic correlates
of two levels of annotated stress in the USAR training recordings.
The results of this preliminary study indicate that mostly prosody
and TEO features correlate with the high stress annotated level and
characterise physical stress; whereas spectral, TEO and prosody cor-
relate with the medium stress annotated level and characterise cog-
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nitive load. In order to classify speech under stress and cognitive
load in the USAR training recordings we propose the combination
of TEO-AutoEnv, voice strengths and spectral features extracted at
subband level; we also use classic prosodic and articulatory features,
spectral features and voice quality features, recently reported as good
discriminators of cognitive load [18]. For comparison we train a
classifier with state of the art acoustic features (thousands of fea-
tures used in the first Paralinguistic Challenge [19]) and also train an
adaptive Gaussian Mixture Models (GMMs) classifier with MFCCs
and their first and second derivative [20]. According to our results
and the results reported in [12] it seems that careful selection and
combination of a reduced number of appropriate features result in
better classification performance, in particular when working with
sparse and unbalance data.

3. DATA COLLECTION AND ANNOTATION

The speech database analysed in this paper corresponds to the
recordings of the NIFTi Join Exercises 2011 on human-robot-
teaming (NJEx2011) [21]. The NIFTi Join exercises took place
in a constructed, complex environment where four different teams
performed several missions in two days. On the first day (0706)
each team had two missions: in mission 1 the teams traversed a
complex arena with an unmanned ground vehicle (UGV), helped
by an unmanned aerial vehicle (UAV); each team got 45 minutes.
In mission 2 the teams explored two floors in the Red Building
searching for victims; each team got 75 minutes. On the second
day of exercises (0707) the teams went into the Red Building again
but this time under more severe circumstances: smoke, fire, more
floors to explore and in less time. Each team explored three floors of
the Red Building searching for victims; each team got 90 minutes.
In all the exercises UGV operation was remote, UAV was Line Of
Sight (LOS) and the communication was done in English via open
voice loop only. 7 sessions (missions) were recorded during the
first day and 4 during the second day. Different team players (only
male) participate in each session. The recordings of each session
were segmented per turn and annotated according to the speakers,
or team players, that participate on the mission. Table 1 shows the
distribution of turns (utterances) per day and speaker

Day
Speaker 0706 0707
missionDirector 161 272
safetyDirector 817 324
teamRole 47 25
uavPilot 31 48
ugvPilot 343 197
whiteCommand 53 36
Total time 410 min. 315 min.

Table 1. NJEx2011 distribution of turns per day and speaker. The
average duration of a turn is 6 seconds.

The segmented sessions were further annotated according to
three levels of stress: level (1) no stress, speech is neutral, normal,
relax, happy; level (2) medium stress, speech is nervous, there is
tension in the voice, more speed, there are hesitations; and level
(3) high stress, there are shouts, anger, despair. Three people an-
notated each utterance according to these levels. Full agreement of
annotators was obtained in 69.6% of the data, additionally majority
agreement (more than two annotators agree) was obtained on 29.5%
of the data. In a previous experiment where the data was annotated

Speaker Physical stress Cognitive load Neutral
(high stress) (medium stress)

missionDirector 0 16 401
safetyDirector 27 189 855
teamRole 0 4 67
uavPilot 0 1 77
ugvPilot 1 19 495
whiteCommand 0 2 85
Total 28 231 1980
Percentage 1.2% 10.3% 88.4%

Table 2. NJEx2011 distribution of turns per speaker type and anno-
tated stress level. In a previous study [17], the two levels of anno-
tated stress were identified as physical stress and cognitive load.

by two people [17], we have selected the full agreement data for
analysis, in this case the full agreement data set was smaller, in par-
ticular for the sparse classes: physical stress and cognitive load. So
we decided to use an approach similar to the sparse-instances-based
active learning reported in [22] to select more samples from the
majority agreement set. In our case we start creating a classifier with
the full agreement data, select K sparse samples from the majority
agreement set, add these samples together with the majority agree-
ment label to the training data and update the classifier. We repeat
this procedure until there are no more sparse samples in the majority
agreement set. Following this procedure the classifier is improved
every time sparse samples are added. Once there are no more sparse
samples to add we use the final classifier to select samples where the
majority agree with the classifier prediction. In this way we discard
outlier samples. The final distribution of data according to speakers
and three stress categories is presented in Table 2.

4. ACOUSTIC FEATURES

Three sets of acoustic features were extracted from the data and used
on different classification experiments: (1) The first set includes 12
MFCCs and their first and second derivative, extracted at frame level
using HTK [23]. MFCCs have been reported as good correlates of
stress and cognitive load in recent literature [16, 12]. (2) In a second
set we use state of the art features used in the classification of par-
alinguistic features [19]. In this case we use the openSMILE tool and
the emobase2010 scripts to extract 1583 features that include: pitch,
loudness, MFCC, log Mel Frequency Bands (MFB), Line Spectral
Frequencies (LSP), voice quality features (jitter and shimmer) and
functionals [24]. (3) In the third set of features, we extract full band
and subband features reported as robust for analysing speech under
stress in real situations. These features were mainly extracted using
the snack toolkit [25]. In the following we briefly describe this third
set of features:

4.1. Full band acoustic features

Among the full band features we have extracted standard prosodic
features, spectral, articulatory and voice quality features:

• Standard prosodic features (extracted frame based): Funda-
mental frequency or pitch (F0); maximum, minimum, and
range of F0; duration of the utterance in seconds; voicing
rate calculated as the number of voiced frames (frames for
which F0 > 0) per time unit; and log power calculated as
the logarithm of the averaged short term energy: log pow=
log( 1

N

∑
x2), N is the length of the window frame.
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• Spectral and articulatory-based features

– Mel-cepstral coefficients

– Formants: F1, F2, F3, F4

– Formant bandwidths: B1, B2, B3, B4

– Formant dispersion: calculated as:
FD = (F2−F1)+(F3−F2)+(F4−F3)

3

• Voice quality (VQ) features: the following gradient VQ fea-
tures, extracted at frame level, are rough spectral estimates
of traditional voice quality parameters normally calculated in
the time domain. These features were developed in [26] and
were shown to be robust on the classification of emotions un-
der different levels of noise and reverberation:

– Open Quotient Gradient = (H̃1 − H̃2)/F0

– Glottal Opening Gradient = (H̃1 − Ã1p)/(F1p − F0)

– Skewness Gradient = (H̃1 − Ã2p)/(F2p − F0)

– Rate of Closure Gradient = (H̃1 − Ã3p)/(F3p − F0)

– Incompleteness of Closure = B1/F1

These measures are gradients instead of amplitude ratios; they
are calculated on the basis of frame-based raw measures like
formant frequencies, formant bandwidths, amplitude of the
first two harmonics at F0 and 2F0: H1, H2, frequency of
spectrum peaks near formants: F1p, F2p, F3p, and amplitude
of spectrum peaks near formants: A1p, A2p, A3p. A tilde on
some of the raw measures indicates vocal tract influence com-
pensation. We also extract VQ features at utterance level
based on the long term average spectrum (LTAS) in three
bands of frequency [27]: 0-2kHz, 2-5kHz and 5-8kHz. For
each of these bands the maximum LTAS level is selected.

– Hamm effort = LTAS2−5k

– Hamm breathy = (LTAS0−2k - LTAS2−5k) - (LTAS2−5k

- LTAS5−8k)

– Hamm head = (LTAS0−2k - LTAS5−8k)

– Hamm coarse = (LTAS0−2k - LTAS2−5k)

– Hamm unstable = (LTAS2−5k - LTAS5−8k)

– slope LTAS: least squared line fit of LTAS in the log-
frequency domain (dB/oct)

– slope LTAS1kz: least squared line fit of LTAS above 1
kHz in the log-frequency domain (dB/oct)

– slope spectrum1kz: least squared line fit of spectrum
above 1 kHz (dB/oct).

4.2. Subband acoustic features

The following subband features were implemented using the snack
toolkit library [25]. First the speech signal is filtered with five band-
pass filters with pass-bands: 0-1kHz, 1-2kHz, 2-4kHz, 4-6kHz and
6-8kHz. Then the following features are calculated from each band-
pass signal:

• Teager Energy Operator - autocorrelation envelope (TEO-
AutoEnv) [28]: this is a measure that has been used to
detect and classify speech under stress (emotional, task
stress, Lombard effect) in the SUSAS database. The Tea-
ger operator for a discrete-time signal is defined as [28]:

Ψ[x(n)] = x2(n) − x(n + 1)x(n− 1)

In our implementation of the TEO-AutoEnv, we apply the
TEO operator to the five filtered signals, then the autocorrela-
tion from each TEO band is calculated and the area under the
autocorrelation envelope is calculated and normalised over
the window lag. The TEO operator has been applied to the
five filtered signals, instead of the 16 critical bands proposed
in [28], because it has been found that some bands are less
sensitive for stress/neutral speech classification [29], so we
reduce the number of bands and extract other features on
each band to study their redundant or complementary effect.

• Voicing strengths (STR): estimated with peak normalised
cross correlation of the input signal. The correlation coeffi-
cient for a delay t is defined by:

ct =
∑N−1

n=0 s(n)s(n+1)√∑N−1
n=0 s2(n)

∑N−1
n=0 s2(n+t)

In a previous work [30], we have found that voicing strengths
are correlated with vocal effort of dominant speech, so it is
expected that these features are correlated as well with some
type of stressed speech (shouting, angry speech, etc.).

• Spectral entropy (SPE): this feature is a kind of “peakiness”
of the spectrum. This feature is calculated as follows [31]:
the spectrum X is converted into a Probability Mass Function
(PMF) normalising it by: xi = Xi∑N

i=1 Xi
i = 1 : N where

Xi is the energy of the ith frequency component of the spec-
trum, x is the PMF of the spectrum and N is the number of
points in the spectrum. Entropy for each frame is calculated
by: H(x) = −

∑
x∈X xi ∗ log2xi

Spectral entropy has been used in speech endpoint detection
and in classification of emotions.

5. CLASSIFICATION

In order to tackle the problem of classification of very unbalanced
data, several strategies have been proposed. In this work we have
used weighted support vector machine (SVM), where the weight
values are determined by the proportion of data in each class. Two
weighted SVM classifiers were trained and tested, one was trained
with 1583 openSMILE features and the other with the full-band and
subband features described in Section 4. Another strategy to classify
very unbalanced data, is to create a universal or background model,
using for example the neutral data, and adapt it to the acoustics char-
acteristics of the sparse sets [20]. In this work, we have created a
background Gaussian Mixture Model (GMM) using the annotated
neutral data. This is a GMM of 32 mixtures trained with MFCCs
features and their first and second derivatives. Maximum likelihood
linear transformations (MLLR) and Maximum a-posteriori (MAP)
adaptation techniques [23] were used to adapt the background model
with physical stress and cognitive load data. Classification is per-
formed using the two adapted models and the background neutral
model. Two classification experiments were designed as follows:

1. Speaker dependent classification (SD): 40 repetitions of
stratified sampling where 2/3 of the data in each class is ran-
domly selected to train the models and the other 1/3 (not used
for training) is used for testing. Stratified sampling is used
in order to keep a balance on the amount of data for training
and testing each class.

2. Speaker independent classification (SI): in this case the
safetyDirector speaker of each session, who is a different
person in every session, is used for testing and the rest of the
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data for training. Classification results of all safetyDirector
speakers of all sessions are averaged for a final SI score.

Baseline classification results for physical stress, cognitive load and
neutral speech data are presented in Table 3. Best classification re-
sults in terms of a good compromise between individual classes clas-
sification and overall accuracy are presented in bold. Similar results
for physical stress and neutral are obtained with the FULL-SUBBAND
and MFCC 0 D A classifiers. The EMOBASE2010 classifier gives
good classification for cognitive load and neutral but almost random
for physical stress, which might be due to the small amount of phys-
ical stress samples to train a classifier with so many features.

Classifier Features PS CL N Acc.

SD
SVM-r FULL-SUBBAND 45.8 76.9 81.3 80.4
32GMMs MFCC 0 D A 45.8 70.1 74.2 73.4
SVM-p EMOBASE2010 31.1 83.4 73.5 74.0

SI
SVM-r FULL-SUBBAND 48.1 52.4 74.9 70.2
32GMMs MFCC 0 D A 55.6 45.0 64.3 60.7
SVM-p EMOBASE2010 25.9 77.2 73.6 73.0

Table 3. Baseline classification of physical stress (PS), cognitive
load (CL) and neutral (N) data. Acc: overall classification accuracy,
SD: speaker dependent, SI: speaker independent. SVM-r: radial ker-
nel, degree 3; SVM-p: polynomial kernel, degree 1.

5.1. Two steps classification approach

In this experiment motivated by the analysis presented in [17], where
it was found that the acoustic correlates of physical stress and cogni-
tive load are very different, we decided to perform the classification
of the three classes in two steps. In the first step we classify physical
stress and the rest of the data (both cognitive load and neutral) using
just subband features. Subband features were found to be the best
discriminant features between physical stress and the rest of the data.
In a second step we classify cognitive load and neutral data. We have
found that in our data the features that better discriminate speech
under cognitive load and neutral speech are VQ and MFCCs. We
compare results using MFCC 0 D A and EMOBASE2010 features in
the second step. The results of the two steps classification approach
are presented in Table 4. These results include error correction due
to misclassifcations in the first step.

Classifier/features
STEP 1 STEP 2 PS CL N Acc.

SD SVM-r /
SVM-r/VQ-MFCC 75.6 54.3 77.5 75.1
32GMMS/MFCC 0 D A 78.0 48.6 73.3 70.8

SUBBAND SVM-p/EMOBASE2010 73.6 55.7 68.9 67.6

SI SVM-r /
SVM-r/VQ-MFCC 70.4 50.3 67.7 64.7
32GMMs/MFCC 0 D A 70.3 43.9 61.4 58.5

SUBBAND SVM-p/EMOBASE2010 70.4 38.1 62.2 58.2

Table 4. Two steps classification approach of physical stress (PS),
cognitive load (CL) and neutral (N) data. Acc: overall classification
accuracy, SD: speaker dependent, SI: speaker independent. SVM-r:
radial kernel, degree 3; SVM-p: polynomial kernel, degree 1.

5.2. Adding controlled data to boost stress classification

As can be seen in Table 3 the classification of physical stress data
is particularly low, which might be due to the very little amount of

data in this class. The characteristics of this type of data are clearly
distinguishable, that is, typical shouting, anger or despair of physi-
cal stress. This is a type of stress that can be found in the SUSAS
database, which in our case fit very well because there is available
male samples and in English. So, in order to boost the classification
of physical stress we have added some samples of simulated anger
from the SUSAS database to the training data. We have selected
utterances longer than one second, from four speakers: 17 samples
of anger and 18 samples of neutral speech data. Adding these sam-
ples to our best classifier in Table 4 improved the classification of
physical stress and cognitive load as shown in Table 5.

Classifier/features
STEP 1 STEP 2 PS CL N Acc.
SVM-r / SVM-r / SD 82.7 60.2 75.6 74.2
SUBBAND VQ-MFCC SI 66.7 50.1 67.1 65.2

Table 5. Classification of physical stress (PS), cognitive load (CL)
and neutral (N) data using two steps and adding simulated anger and
neutral samples from the SUSAS database. SD: speaker dependent,
SI: speaker independent. SVM-r: radial kernel, degree 3.

6. CONCLUSIONS

We have presented the classification of speech under stress and cog-
nitive load in speech recordings of USAR training operations. In
contrast to most of the analysis of speech under stress and/or cogni-
tive load reported in the literature, we have analysed speech record-
ings of real situations under very noisy conditions. The stress levels
in this data were determined by manual annotation and not by the
recording condition or experimental setting. Speaker dependent and
speaker independent classification experiments were performed. A
speaker dependent solution might be meaningful in cases where data
from the rescue team is available, which might be the case when
designing a system for a particular team.

We have proposed to handle the speech signal at subband level
as follows: the well known, stress correlated, TEO-AutoEnv feature
is extracted at subband level and combined with voice strengths and
spectral features, also extracted at subband level. The features ex-
tracted at subband level proved to be more robust when compared
to the full-band features or the thousands of features extracted in a
“brute-force” approach. In particular the proposed subband features
were found to be robust to classify physical stress.

Two strategies to improve the classification of stress were pro-
posed: a two steps classification approach and the adding of con-
trolled data from the SUSAS database to boost stress classification.
We have shown that the two steps classification approach, where ap-
propriate features are selected to train two classifiers working in tan-
dem, gives better results than only one classifier trained with hun-
dreds of features. We have compared our results with state of art
methods and techniques like adaptive GMMs and SVM classifiers
trained with thousands of features. We have achieved a speaker de-
pendent classification accuracy of 74% for three very unbalanced
classes (physical stress, cognitive load and neutral), with 82% clas-
sification of physical stress.

In future work we will consider to use speaker normalisation in
order to improve speaker independent classification. Also in order
to improve cognitive load classification (the second step in our two
steps classification approach), we will consider combining acous-
tic and linguistic features like hesitations, fluency problems, silent
pauses, filled pauses, which are expected to occur during time pres-
sure and cognitive load [32].
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