
DETERMINING CO-LOCATION USING A SEQUENTIAL HYPOTHESIS TEST ON
PATTERNS OF SILENCE

Wai-tian Tan Ramin Samadani Bowon Lee Mary Baker

Mobile and Immersive Experience Lab, Hewlett Packard Labs, Palo Alto, CA
{wai-tian.tan, ramin.samadani, bowon.lee, mary.baker}@hp.com

ABSTRACT

In everyday meetings, automatic association of co-located
mobile devices would ease sharing of web-links, media, and
other information. We propose a method that compares pat-
terns of silence from device microphones to detect co-location
of those devices. This method works with unsynchronized
audio capture, requires only 100bps and preserves privacy.
We show how to formulate pattern matching in a sequential
hypothesis framework so that changes in co-location sta-
tus (when people leave or join a meeting) can be determined
promptly, and how to compute the likelihood ratio in practice.
Using 16 hours of captured audio, we show that our approach
can correctly determine device co-location with a low error
rate of 0.05%, and can detect co-location changes 10 seconds
faster than a similar decision rule based on a constant time
window. Compared to a prior audio signature method, we
achieve higher accuracy at 1/7 the bit rate.

Index Terms— sequential hypothesis test, voice activity
detection, mobile device association.

1. INTRODUCTION AND PRIOR WORK

Sharing text, pictures and other digital information in meet-
ings is part of our daily lives, yet the process is often te-
dious, requiring typing or emailing long URLs or codes. If
we can reliably and continously determine which devices are
co-located and are thus part of the same meeting, we can im-
plement easier and more intuitve methods of content sharing,
for instance through user interfaces in which drag-and-drop
device icons automatically appear.

Zhang and Trott [1] argue for effectively determining
device co-location by comparing device audio signatures.
This is because people hearing the same conversation pro-
vides a human-centric concept of a meeting, while physical
location alone, as determined for instance using WiFi-based
methods, can inadvertently associate nearby people who are
in different conference rooms. Device audio signatures also
allow us to include the devices of people attending a meeting
remotely, via teleconference, which WiFi-based methods do
not. Nevertheless, a practical audio signature needs to be
low bit-rate, preserve privacy by not revealing the content of

a conversation, support accurate and prompt determination
of co-location, and must be implementable in a distributed
fashion.

The binary silence signature offers all the above advan-
tages. It is obtained using a voice activity detector to classify
each 10 ms block into 1 bit of silence (0) or voice (1). We
send this low bit-rate (100 bps) silence signature to a server
that compares signatures across devices and returns the iden-
tities of the co-located devices. Preserving privacy, the silence
signature does not reveal the conversation.

One alternative to matching silence signatures is to corre-
late either the audio signals or the windowed energy of those
signals. We find this works poorly since people are at differ-
ent locations in the room. The resulting mixed signal has au-
dio components from each person but with different loudness
at each device. Our approach using silence signatures works
better because it is robust to these loudness differences.

The most similar prior work [1], proposes an audio co-
location signature based on quantized phase. There are two
essential advantages of a silence signature over quantized
phase. First, compression can destroy phase information [1],
meaning phase-based methods cannot generally extend to
remote participants. Second, phase is inherently sensitive to
alignment errors when the frames used to compute phase are
not aligned temporally across devices. We show in the results
section that this can cause significant drop in performance,
and that a silence signature is more accurate overall. Further-
more, a quantized phase signature contains more information
than a silence signature, requiring seven times higher bit rate.

Audio signatures have been extensively used in music
search [2]. One key difference between co-location and mu-
sic search is the access to a clean reference signal for music
search [1]. In contrast, audio signatures to determine device
co-location are all computed from noisy, distorted signals.

A sound-emitting method [3] uses sentences automati-
cally generated from public keys and vocalized by a text-to-
speech system to establish secure pairing between devices
with the aid of humans for manual authentication. In con-
trast, our method uses the unmodified acoustic environment
and does not require explicit user interaction.

There are non-audio ways of associating devices [4] such
as bump [5]. These methods generally do not extend to re-

503978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



mote participants of tele-conferences, because they require
physical bumping together of the devices.

Our contribution in this paper is three-fold. First, we pro-
pose use of a silence signature for determining co-location
and evaluate its effectiveness. Second, we develop practical
approximations of the joint pdf for the two silence signatures
we compare. We use statistical models of the transitions be-
tween speech and silence from the two signals to allow com-
putation of the likelihood ratio for hypothesis testing. Third,
we apply sequential hypothesis testing [6, 7] to adaptively
choose the smallest possible window size to reduce decision
latency when co-location status changes (when someone joins
or leaves the meeting). We compare the performance of our
method with a constant window method, and a related prior
method [1].

2. FORMULATION

Given current silence signatures s(0), s(1) from two devices,
we want to decide between these two hypothesis

θ0: s(0) and s(1) are signals from different locations

θ1: s(0) and s(1) are co-located signals

by testing observations x = [s(0) s(1)]T over a causal window
τ . A straightforward approach uses constant τ independent of
the content of s(0) and s(1). However, a large τ entails long
decision latency when co-location state changes, whereas a
small τ is susceptible to higher mis-classification. Instead, we
seek a sequential solution where progressively larger obser-
vation windows of τ1 ≤ τ2 ≤ τ3 ≤ . . . are tried in sequence
until we are confident about our decision. In a sequential anal-
ysis framework [6, 7], this is the same as progressively testing

β

1− α
<
f(x(τi)|θ1)
f(x(τi)|θ0)

<
1− β
α

(1)

until the middle likelihood ratio term falls below β
1−α when

we declare θ0 is true, or rises above 1−β
α when we declare

θ1 is true. The quantities α and β are the desired mis-
classification rate when θ0 and θ1 are true, respectively.

Taking the logarithm of (1), and choosing α = β, we can
simplify the decision rule as

θ0 if LLR(τi) < −θ

θ1 if LLR(τi) > θ

where LLR is the log likelihood ratio, and θ = log 1−β
α is the

decision threshold. We try τi+1 if |LLR(τi)| ≤ θ.

2.1. Likelihood under different locations: f(x(τ)|θ0)

We can model durations of speech and silence in conversa-
tion by exponential and shifted exponential (p(t) = e−(t−t0)

for t ≥ t0) distributions, respectively [8, 9], where t0 is the
minium silence duration produced by a voice activity detec-
tor, and is set to 0.1s in this paper. Assuming independence
of individual silence and speech durations [9], we can express
f(x(τi)|θ0) as products of the probability of each silence
and speech duration over time window τi across both signals.
We compute the parameters for the exponential and shifted-
exponential distributions empirically from s(0) and s(1) as
the reciprocal of the average voice and silence durations,
respectively.

2.2. Likelihood under co-location: f(x(τ)|θ1)

The pdf of joint observation x(τi), given by f(x(τi)) =
f(s(0)(τi), s

(1)(τi)), can be written as

f(x(τi)) = f(s(1)(τi)|s(0)(τi)) · f(s(0)(τi)), (2)

where we can readily compute f(s(0)(τi)) from the statis-
tics described in Section 2.1. We approximate the conditional
term f(s(1)|s(0)) as follows. We first find all begin times b(0)j
and end times e(0)j of each silence period in s(0). We then find

the corresponding (i.e., closest) begin times b(1)(b(0)j ) and end

times e(1)(e(0)j ) in s(1). We then approximate the conditional
probability as

f̂(s(1)|s(0)) =
∏

pb(b
(0)
j − b

(1)(b
(0)
j ))pe(e

(0)
j − e

(1)(e
(0)
j ))

where pb(d) and pe(d) are probabilities that co-located signa-
tures have silence begin and end times that deviate by offset
d, respectively, and are determined a priori via training.

We derive pb and pe from 7 co-located recordings from
various devices in an actual project meeting that lasted one
hour. We collected the silence duration as well as the offsets
for all silence begin and end times. We find that the statistics
of pb and pe are similar and not worthy of separate account-
ing. The distributions of offsets for silence periods shorter
than 0.3 seconds and longer than 0.3 seconds are shown in
the left and right plots of Fig. 1, respectively. Their similar
shapes and symmetry suggest that it is not necessary to con-
dition on silence duration, and it suffices to consider offset
magnitude.

With these simplifications, the resulting empirical pdf of
offset magnitude is shown in gray in Fig. 2. This is further
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Fig. 1. Offset distribution in begin and end times of silence
period of different durations for co-located silence signatures.
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Fig. 2. Offset magnitude in silence begin and end times for
co-located silence signature, with empirical distribution in
gray and model in black.

approximated by the black curve in Fig. 2 by using an ex-
ponential distribution for offsets less than 0.3 seconds, and
a uniform distribution for offsets between 0.3 to 3 seconds.
Offsets larger than 3 seconds are clipped to 3 seconds. Both
pb(d) and pe(d) are computed by looking up |d| against the
black curve.

With f̂(s(1)|s(0)), we can compute f(x). Rather than di-
rectly using (2), we instead use

f(x) =
1

2
[f(s(1)|s(0)) · f(s(0)) + f(s(0)|s(1)) · f(s(1))] (3)

to ensure symmetry in the arguments s(0)(τi) and s(1)(τi).

3. RESULTS

This section shows results 1) comparing accuracy of se-
quential versus constant windows; 2) comparing accuracy
of sequential versus the method in Zhang [1]; 3) comparing
decision latency for the sequential versus constant window
method, including the case of a remote participant in a tele-
conference.

We first compare the accuracy of using an adaptive win-
dow as determined by the sequential method versus that of a
constant window and that of the quantized phase method [1].
Our results use 5 audio recordings of 1 hour each. Three
recordings, A,B,C, are from a different work meeting than
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Fig. 3. Receiver operating characteristics for various ap-
proaches zoomed in for 0.9 ≤ TPR ≤ 1.

that used to derive statistics in Section 2, while recordings D
and E are from other unrelated meetings. For adaptive win-
dows, we employ the sequential hypothesis testing starting
with an intial window of τ1 = 3 seconds, and increase in 1
second steps until the decision threshold θ is crossed. Co-
location of A with B to E is evaluated every second. Fig. 3
shows the results expressed in receiver operating character-
istics (ROC). With θ = 10, the average window size is 4.3
seconds, and we already achieve a true positive rate (TPR)
of 0.97, with a false positive rate (FPR) of 0.28%. Using a
constant window of 5 seconds results in significantly worse
TPR of 0.95 and FPR of 2.1%. Moving to θ = 30, with an
average window size of 10.8 seconds, the adaptive windows
method achieves TPR of 0.997 and a perfect FPR. In contrast,
using a constant window of size 11 seconds would result in
worse TPR of 0.978 and FPR of 0.1%. Further testing with
16 hours of recordings including more diverse settings such
as a noisy cafeteria has shown that we can achieve a TPR
of 0.9995 (0.05% error) and a perfect FPR of 0. We do not
trace a curve as we vary θ since the trade-off is not between
TPR and FPR. Instead, larger θ corresponds to improvement
in both TPR and FPR at the expense of a larger average win-
dow size.

The quantized phase method [1] computes quantized
phase for 0.4s frames that are overlapping by 0.2s. Co-
location is determined by comparing quantized phase in
2-second windows. With frames overlapping by 0.2s, a
worst-case misalignment between two devices that deter-
mines frame boundary independently is 0.1s, with an average
misalignment of 0.05s. From Fig. 3, we see the performance
of quantized phase using the default 2-second windows lags
that of our silence signature significantly, even with frame
alignment. The performance gap increases drastically as
frame misalignment increases. Nevertheless, the performance
of quantized phase increases significantly when the window
size increases to 11 seconds, achieving near perfect TPR and
FPR with aligned frames. When alignment cannot be guar-
anteed, we see from Fig. 3 that silence signature provides
significantly superior TPR and FPR over quantized frames
with 11s windows and 0.1s misalignment while consuming
only 100 bits per second compared to 700 for quantized
phase.

Figs 4 and 5 shows the time trace of computed log like-
lihood for adaptive window with θ = 30 and constant win-
dow of 11 seconds, respectively. We see that using adaptive
windows is much more successful in separating the true pos-
itives (black) from true negatives (gray) than using constant
windows. The corresponding trace for quantized phase using
11 seconds window and 0.1s frame misalignment is shown in
Fig. 6. Again, silence signature with adaptive window pro-
vides superior separation.

We next illustrate the reduction in decision latency when
co-location status changes. In this experiment, Ramin and
Mary are in a conference room talking with Dan, who is re-
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Fig. 4. Time trace of log likelihood ratio using adaptive win-
dow with θ = 30.
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Fig. 5. Time trace of log likelihood ratio for constant window
of 11s.
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Fig. 6. Time trace of score computed using quantized phase
with misalignment of 0.1s using 11s window.

mote (attending by telephone). At time 105 seconds, Mary
leaves the room and returns at time 310 seconds. The adap-
tive window sizes are shown in Fig. 7 between Dan-Ramin
and Mary-Ramin. Due to more distortion caused by the phone
system, we need a larger average window size of 16 seconds
between Dan-Ramin versus that of 11 seconds between Mary-
Ramin.

Fig. 8 shows the log likelihood ratio evaluated every sec-
ond using adaptive windows. Mary is determined to have left
the room at time 116 seconds, re-entering at time 320 sec-
onds, for a decision latency of 11 and 10 seconds, respec-
tively. Fig. 9 shows the corresponding result employing a
constant window size of 14 seconds – the average window
size of Fig. 8. With constant window size, the maximum like-
lihood decision is to choose θ0 or θ1 depending on whether
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Fig. 7. Window size from sequential hypothesis test.
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Fig. 8. Log-likelihood ratio using adaptive window.
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Fig. 9. Log-likelihood ratio using constant window of 14 sec-
onds, the average window size of Fig. 8.
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Fig. 10. Log-likelihood ratio using a constant window of 50s.

LLR is negative or positve, respectively. We see that the
small window causes four mis-classifications between Dan-
Ramin, at times 79, 231, 380, and 449 seconds. One remedy
to reduce such mis-classification is to use a larger constant
window. We have determned empirically that a window size
of 50 seconds is necessary to prevent mis-classification be-
tween Dan-Ramin. Corresponding results for a constant win-
dow of 50 seconds are shown in Fig. 10. Nevertheless, the
times in which Mary is determined to have left and re-entered
the room are 127 and 340 seconds, respectively. This repre-
sents an additional 11 and 20 seconds worth of delay com-
pared to the use of adaptive windows.

4. CONCLUSIONS

In this paper, we propose the use of silence signatures for de-
termining device co-location, describe how to formulate this
in a sequential hypothesis testing framework, and show that
we achieve superior accuracy compared to a non-sequential
test and a prior method based on audio signatures [1].
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