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ABSTRACT

This paper describes a method for obtaining a perceptually

motivated and perfectly invertible time-frequency representa-

tion of a sound signal. Based on frame theory and the recent

non-stationary Gabor transform, a linear representation with

resolution evolving across frequency is formulated and imple-

mented as a non-uniform filterbank. To match the human au-

ditory time-frequency resolution, the transform uses Gaussian

windows equidistantly spaced on the psychoacoustic “ERB”

frequency scale. Additionally, the transform features adapt-

able resolution and redundancy. Simulations showed that per-

fect reconstruction can be achieved using fast iterative meth-

ods and preconditioning even using one filter per ERB and a

very low redundancy (1.08). Comparison with a linear gam-

matone filterbank showed that the ERBlet approximates well

the auditory time-frequency resolution.

Index Terms— time-frequency representation, auditory

filterbank, perfect reconstruction, non-stationary Gabor trans-

form, preconditioning, ERB scale

1. INTRODUCTION

Sound signals such as speech or music are non-stationary

by nature. Accordingly, audio processing techniques like

sound design, audio coding, auditory scene analysis or speech

recognition call for specific tools to analyze, process, and re-

synthesize sounds. In this context, linear time-frequency (TF)

representations have become standard tools. They allow de-

composing any signal into a set of elementary functions with

good TF localization and achieving perfect reconstruction if

the transform parameters are chosen appropriately (e.g., [1]).

Because speech and music signals are usually targeted at

human listeners, using knowledge about the human auditory

system in audio signal processing is natural. This is done

for instance in perceptual audio coding where psychophys-

ical data on auditory masking are used to reduce the size

of digital audio files [2] or, similarly, in a recent perceptual

sparsity approach [3]. Nevertheless, many audio applications
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(including audio coding) still rely on Fourier-based trans-

forms such as the Gabor or discrete cosine transforms that

have a fixed resolution over the whole TF plane. Conse-

quently, their TF resolutions are not compatible with that of

the auditory system (see Sec. 2). Several existing methods al-

low for obtaining a perceptually motivated TF representation

of audio signals (see Sec. 3) but many properties desirable

in analysis-synthesis systems, namely invertibility, compu-

tational efficiency, and adaptable redundancy are lost in the

process. Our work introduces a new TF transform constructed

to fulfill these requirements while providing perceptually mo-

tivated TF resolution. We rely on frame theory and the

recent non-stationary Gabor transform (NSGT) to formulate

a perfectly invertible representation with resolution evolving

across frequency [4], resulting in a non-uniform filterbank.

This approach has been used in [5] to implement an invertible

transform with constant relative bandwidth (“constant-Q”)

frequency analysis. Here, we propose a transform matched

to the psychoacoustic “ERB” frequency scale, thereby re-

ferring to the result as the ERBlet transform. To provide

more control over the resolution and redundancy of the signal

representation, we allow for non-compactly supported win-

dows and large frequency-dependent down-sampling factors,

potentially violating the “painless” conditions for perfect re-

construction given in [4]. We show that in this particular

case, reconstruction is still possible using fast iterative meth-

ods and preconditioning provided the system constitutes a

frame. Practical examples and simulations in Sec. 5 show

that if some redundancy is retained, the proposed analysis-

synthesis system is well-conditioned and converges fast to

the correct solution.

2. THE AUDITORY TF RESOLUTION

The peripheral auditory system can be modeled in a first ap-

proximation as a bank of bandpass filters whose bandwidth

corresponds to the spectral resolution of the ear. Many psy-

choacoustical studies have focused on the characterization of

these “auditory filters”(see [6] for a review). The filters are

commonly described by their equivalent rectangular band-

width (ERB). The ERB (in Hz) of the auditory filter centered
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at frequency F (in Hz) is [7]

ERB(F ) = 24.7 +
F

9.265
. (1)

Eq. (1) indicates that the auditory frequency resolution as de-

scribed by the ERB is approximately constant-Q only at high

frequencies (> 2 kHz). For the full range of audible frequen-

cies (.02–20 kHz) the ERBs range from 27 Hz to 2.2 kHz.

Using ERB units, the range of audible frequencies can be dis-

cretized as a bank of 39 adjacent filters whose ERB number

is [7]

ERBnum(F ) = 9.265 ln

(
1 +

F

228.8455

)
(2)

and, reciprocally,F = u(EF ) = 228.8455
(
e(EF /9.265) − 1

)
.

Eq. (2) corresponds to the ERB scale used to plot psychoa-

coustical data on a perceptual frequency axis. The partition of

the frequency axis into filters leads to a partition of the time

axis into time windows whose widths correspond to the tem-

poral resolution at a certain frequency. In [8] the windows’

shape was estimated using Gaussian stimuli with various

spectro-temporal shapes. The results indicated that the spec-

tral width of one window corresponds to one ERB and the

temporal width approximately corresponds to four periods of

the carrier frequency, e.g., 4 ms at 1 kHz. Overall, the data in

[8] suggests that the auditory systems performs a TF analysis

using its own “internal” windows that are well approximated

by Gaussians with frequency dependent spectro-temporal

resolution.

3. AUDITORY-BASED TF REPRESENTATIONS

To date, two general approaches exist to achieve a percep-

tually motivated TF representation of an audio signal. The

first approach includes models of auditory processing like in

[9, 10]. Such models attempt to replicate the various stages

of auditory processing and are useful to improve our knowl-

edge about the auditory system. However, they feature many

parameters, they are computationally demanding and not in-

vertible. Approximately invertible models were proposed in,

e.g., [11, 12] as integrated audio coders. Consequently, the

signal representation is not easily accessible. Overall, audi-

tory models do not constitute TF analysis-synthesis tools. The

second approach includes TF transforms tuned to mimic the

auditory TF resolution (see Sec. 2). Wavelet and constant-

Q transforms are used [5, 13, 14] in this context, but they

mismatch the auditory spectral resolution at low frequencies.

Further developments include a bilinear transform [15], lin-

ear [16, 17] and nonlinear gammatone filterbanks [18], and

auditory-based non-uniform filterbanks [19, 20]. They ap-

proximate the auditory TF resolution nicely but fail at pro-

viding prefect reconstruction.

4. PROPOSED APPROACH

In the following, we consider real-valued signals of length L.

The inner product of two signals f, g is 〈f, g〉 =
∑L

l=1 f [l] ·

g[l] and the energy of a signal is defined from the inner prod-

uct as ‖f‖2 = 〈f, f〉. We denote the Fourier transformation

by F : f 7→ f̂ .

4.1. Basic concept: The non-stationary Gabor transform

An NSG system [4] with resolution evolving across frequency

can be formulated as a non-uniform filterbank as

G(g,D) := (gn,k[l]) = (gk [l − nDk]) (3)

where indexes n, k ∈ Z are related to time and frequency,

respectively. This system features frequency-dependentfilters

gk and down-sampling factors Dk. The NSGT relies on frame

theory. The sequence (gn,k) is called a frame if there exist

positive constants A and B (called lower and upper frame

bounds, respectively) that satisfy

A‖f‖2 ≤
∑

n,k

| 〈f, gn,k〉 |
2 ≤ B‖f‖2 (4)

for any signal f . The coefficients cn,k = 〈f, gn,k〉 yield

the analysis of the signal f and the synthesis is given by∑
n,k cn,k gn,k. Frame theory gives a stable way to recon-

struct the signal from the coefficients cn,k using the frame

operator S given by Sf =
∑

n,k 〈f, gn,k〉 gn,k. If S is invert-

ible, then reconstruction is achieved using the canonical dual

frame G̃(g,D) = (g̃n,k) defined by

g̃n,k = S−1gn,k (5)

and f = S−1Sf =
∑

n,k 〈f, gn,k〉 g̃n,k. Note that, in general,

G̃(g,D) does not have the same structure as G(g,D). As in

standard Gabor theory, certain conditions must be fulfilled in

NSGT to achieve perfect reconstruction (i.e., invertibility of

S). Suppose the frequency response of ĝk has a bandpass

characteristic and supp(ĝk) = Ik samples in the positive fre-

quency domain. If the time sampling in each channel satisfies

⌈L/Dk⌉ ≥ 2 Ik, then the operator

Ŝ := F SF−1 (6)

is diagonal and easily invertible. This is called the painless

case [4]. Because this setting restrains the resolution and re-

dundancy of the transform, in this paper we use NSG systems

featuring non-compactly supported windows and large down-

sampling factors. We propose a method using fast iterative

methods and preconditioning [21, 22, 23] so that perfect re-

construction can be numerically efficient in this setting. This

is verified by an experiment in Sec. 5.

4.2. Analysis and dual windows: ERBlets

The ERBlet transform consists of filters gk, k = 0, . . . ,K ,

that are Gaussian windows constructed in the positive fre-

quency domain according to

ĝk[m] = Γ
−

1

2

k e
−π

[

m−ν
k

Γ
k

]

2

(7)
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wherem ∈ Z is the discrete frequency variable, ν is the center

frequency (in Hz), and Γ is a shape factor that controls the ef-

fective bandwidth of ĝ (in Hz). Let Fmin and Fmax denote the

minimum and maximum analysis frequencies, respectively.

Their corresponding ERB numbers are (Eq. (2)) E0 and EK .

Linearly distributing K+1 filters from E0 to EK with a den-

sity of V filters per ERB leads to Ek = E0 + k/V with K =
V (EK − E0). Then νk = u(Ek) and Γk = ERB(νk). The

factor Γ
−

1

2

k in Eq. (7) ensures that all filters have the same en-

ergy. Although Gaussians are not compactly-supported win-

dows, they decay very fast. Thus, by truncating the filters so

that supp(ĝk) = ⌈4 Γk⌉ samples, the filters are close to zero

at the borders. Finally, Dk and V can be chosen such that the

frame operator associated with the ERBlets is invertible (see

Sec. 4.1 and [4]).

4.3. Implementation

The ERBlet algorithms are available at http://www.kfs.

oeaw.ac.at/ICASSP2013_ERBlets. This address is

referred below to as the “web page”.

Algorithms for computing an NSGT with resolution

evolving over time are provided in the Matlab/Octave “LT-

FAT” toolbox [24], where NSG analysis and synthesis are

handled by the algorithms nsdgt and insdgt, respec-

tively. By applying these algorithms to f̂ we obtain an NSGT

with resolution evolving across frequency. To process the

positive and negative frequencies the K + 1 filters are mir-

rored to the negative frequency domain (note that if Fmin and

Fmax are set at the 0 and Nyquist frequencies, respectively,

then only K − 1 filters are mirrored). The ERBlet transform

is determined by the two parameters Dk and V that provide

control over the resolution and redundancy of the transform,

red =
∑K

k=−K D−1
k . The number of time samples in each

channel is given by Nk = ⌈L/Dk⌉. Choosing Dk such that

Nk ≥ supp(ĝk) results in a painless system (see Sec. 4.1).

Otherwise Ŝ is not diagonal and iterative algorithms are re-

quired for efficient inversion. To do so, we use the equality
∑

n,k

cn,kg̃n,k =
∑

n,k

cn,kS
−1gn,k = F−1Ŝ−1

∑

n,k

cn,kĝn,k

to solve the linear system

Ŝx =
∑

n,k

cn,k ĝn,k (8)

with an adapted conjugate gradients (CG) algorithm [21, 22]

where the right-hand sum in Eq. (8) is computed by insdgt.

If G(g,D) is a frame, then Ŝ is self-adjoint and CG converges

to the desired solution. The convergence speed depends on

the condition number κ(Ŝ) (i.e., the frame bound ratio B/A
[22]) and can be improved with a preconditioning step [23].

If the ĝks decay fast enough then Ŝ is diagonal dominant and

the matrix

D(Ŝ)
−1

m,l =

{(∑
Nk|ĝk|

2
)
−1

[m], if m = l

0, else
(9)

Table 1. Parameters, redundancies and frame bound ratios of

the NSG ERBlet systems used in Exp. 1.

G(g,D) case V K Nk red B/A

ERBlet1 painless 1 43 ⌈4 Γk⌉ 4.00 1.44

ERBlet2 painless 3 129 ⌈4 Γk⌉ 12.00 1.07

ERBlet3 CG 1 43 ⌈ 32 Γk

9
⌉ 3.53 1.44

ERBlet4 CG 1 43 ⌈ 8 Γk

3
⌉ 2.64 1.44

ERBlet5 CG 1 43 ⌈2 Γk⌉ 1.98 1.52

ERBlet6 CG 1 43 ⌈ 4 Γk

3
⌉ 1.32 2.56

ERBlet7 CG 1 43 ⌈ 12 Γk

11
⌉ 1.08 5.88

is an efficient preconditioner. Because CG requires self-

adjoint matrices and applying D(Ŝ)
−1

to Ŝ does not result in

a self-adjoint matrix, we use D(Ŝ)
−1/2

ŜD(Ŝ)
−1/2

instead.

Since applying Ŝ to a signal f is equivalent to performing

analysis followed by synthesis with G(g,D), we can use

nsdgt and insdgt to solve Eq. (8). The preconditioner in

Eq. (9) is realized by point-wise multiplication. Thus, one

CG step involves one application of nsdgt and insdgt

and L scalar multiplications for the preconditioning. Pseudo-

code for the algorithms can be found on the web page. As

experimental results in Sec. 5 show, only a few iterations are

necessary for CG to converge to the correct solution up to

numerical precision.

5. RESULTS AND DISCUSSION

Two experiments were conducted to evaluate the performance

of the ERBlet transform. In Exp. 1 we tested the conver-

gence of iterative reconstruction for several NSG ERBlet

systems yielding different redundancies (see Tab. 1). In

Exp. 2 we compared the ERBlet to two other auditory-based

approaches in terms of signal representation, reconstruction

error, and redundancy. The audio material consisted of a 5-

sec musical excerpt from the band Manowar (song “Heart of

Steel”, studio version) in mono format, sampled at 44.1 kHz,

16 bits/sample. All analyses were performed for Fmin = 0
and Fmax = 22.05 kHz. Complementary results, colored

figures, and simulation codes are available on the web page.

The results of Exp. 1 are depicted in Fig. 1 as a conver-

gence plot. It can be seen that preconditioning had a consid-

erable effect for the systems ERBlet3 to ERBlet5. Iterative

synthesis for ERBlet6 and ERBlet7, not shown in the plot,

converged in 21 and 45 iterations, respectively. Precondition-

ing had no effect in these cases. Noteworthy, the number of

iterations does not depend on the signal length but only on the

condition number.

In Exp. 2 we considered the system “ERBlet2” in Tab. 1,

the NSG constant-Q transform in [5], and the linear gamma-

tone filterbank in [16]. The constant-Q transform used 24 fil-

ters per octave distributed between 50 Hz and 22.05 kHz (212

filters in total) and Q = 9 (≈ F/ERB(F ) for F > 2 kHz).
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Fig. 1. Convergence of the iterative reconstruction with (filled

markers) and without diagonal preconditioning (empty mark-

ers) for various ERBlet configurations indicated in Tab. 1.

These parameters for the constant-Q were chosen so that both

the constant-Q and ERBlet transforms have approximately the

same number of filters in the frequency range 2–20 kHz (84)

and the same redundancy over the whole TF plane (12). The

gammatone filterbank used 3 filters per ERB (128 filters in

total). Signal representations are depicted in Fig. 2. Fig. 2a

shows that the ERBlet captured both harmonic (voice vibrato)

and transient (drums) parts in the broadband, rich background

generated by drums and distorted guitars. Fig. 2b shows that

ERBlet and constant-Q representations are very similar above

500 Hz but differ below. Below 500 Hz the ERBlet has a bet-

ter time resolution while the constant-Q transform has a better

spectral resolution. This is due to the fact that the constant-

Q transform features a larger number of filters at low than at

high frequencies. Consequently, the constant-Q transform re-

quired 212 filters to achieve the same (visual) high-frequency

resolution as the ERBlet with 129 filters. Both the ERBlet

and constant-Q transforms led to perfect reconstruction (rel-

ative errors < 10−15). Fig. 2c shows that ERBlet and gam-

matone representations are very similar over the whole TF

plane. Since gammatone filters are auditory filter models per

se, this result indicates that the ERBlet approximates well the

auditory TF resolution. While the ERBlet achieved perfect

reconstruction, the gammatone filterbank led to a relative re-

construction error of about 10−3. Note, however, that this

error was perceptually irrelevant (as indicated by informal lis-

tening). Because the gammatone system in [16] features no

down-sampling option, its redundancy was 128 compared to

12 for the ERBlet.

Overall, the proposed method provides a linear, auditory-

based, and perfectly invertible TF transform that can be easily

integrated in audio analysis-synthesis systems. An advantage

of the current implementation is that resolution and redun-

dancy are adaptable without affecting the reconstruction er-

ror. While the ERBlet achieves a perceptually motivated TF

analysis comparable to that of linear gammatone filterbanks

[16, 17], it allows perfect reconstruction even with a density

of 1 filter per ERB (see Tab. 1). In comparison, a gamma-

tone implementation designed to achieve near-perfect recon-

struction (relative error = 10−7) in [17] requires a minimum

(a) ERBlet transform
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(c) Linear gammatone filterbank
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Fig. 2. TF representations (squared moduli, in dB) for

(a) ERBlet, (b) constant-Q transform, and (c) gammatone fil-

terbank (restricted to the relevant frequency band 0–4000 Hz).

density of 2.4 filters per ERB. Although our approach cannot

substitute for physiologically plausible auditory models like

[10], it could be useful to auditory modeling approaches in

which a density of 1 filter per ERB is often desired [11].

To account for the level dependency of the auditory filters’

bandwidth and the compressive response of the cochlea [6],

an approximately invertible nonlinear gammatone filterbank

was proposed in [18]. To further improve the match between

the auditory and the transform resolutions while retaining the

perfect reconstruction property of the ERBlet, future works

include: inclusion of compression and use of windows with

Gaussian shapes on the ERB scale (i.e., using a warping func-

tion mapping the linear frequency axis to the ERB scale).
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