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ABSTRACT

State-of-the-art classifiers like hidden Markov models (HMMs) in
combination with mel-frequency cepstral coefficients (MFCCs) are
flexible in time but rigid in the spectral dimension. In contrast, part-
based models (PBMs) originally proposed in computer vision consist
of parts in a fully deformable configuration. The present contribution
proposes to employ PBMs in the spectro-temporal domain for detec-
tion of emergency siren sounds in traffic noise, resulting in a classi-
fier that is robust to shifts in frequency induced, e.g., by Doppler-
shift effects. Two improvements over standard machine learning
techniques for PBM estimation are proposed: (i) Spectro-temporal
part (“appearance”) extraction is initialized by interest point detec-
tion instead of random initialization and (ii) a discriminative training
approach in addition to standard generative training is implemented.

Evaluation with self-recorded police sirens and traffic noise
gathered on-line demonstrates that PBMs are successful in acoustic
siren detection. One hand-labeled and two machine learned PBMs
are compared to standard HMMs employing mel-spectrograms and
MFCCs in clean and multi condition (multiple SNR) training set-
tings. Results show that in clean condition training, hand-labeled
PBMs and HMMs outperform machine-learned PBMs already for
test data with moderate additive noise. In multi condition train-
ing, the machine learned PBMs outperform HMMs on most SNRs,
achieving high accuracies and being nearly optimal up to 5 dB
SNR. Thus, our simulation results show that PBMs are a promising
approach for acoustic event detection (AED).

Index Terms— acoustic event detection (AED), part-based
model (PBM), siren detection

1. INTRODUCTION

In daily traffic, emergency vehicles like ambulances, police cars and
fire engines take a special role. While in action, they are prior to
other motorists and cyclists and only partly have to stick to speed
limits, traffic signs, red traffic lights etc. To alert other road users
about their approaching, they use lights and sirens. Unfortunately,
these lights and sirens might be missed leading to hazardous and
life-threatening situations. Reasons for missing alerts can e.g. be
physical deficiencies like hearing impairment or just simple distrac-
tion. Thus, technologies are researched which automatically detect
emergency vehicles to warn road users and hence prevent accidents.

A couple of developments to detect emergency vehicles deal
with special additional devices like infrared [1], ultra sonic [2] or
radio [3–5] transmitter/receiver pairs [6]. For these technologies, the

emergency vehicle has to be equipped with a transmitter broadcast-
ing a particular signal. The road user to be alerted needs to have a
corresponding receiver.

Few technologies use the existing warning signal, namely the
acoustic siren. In Germany, the sound of the siren is defined by
DIN14610 [7]. A siren has to consist of a low and a high tone
with one repetition of this sound sequence. It is supposed to last
for (3 ± 0.5) s. A pause between two sound sequences is not sup-
posed to last longer than 0.8 s. The frequencies of the tones range
between 360 Hz and 630 Hz with relative ratio of 1.333 between
high and low tone. In rural environments, siren signals usually can
be switched to lower frequency ranges than in urban areas. Anyhow,
due to Doppler effects of approaching and vanishing vehicles, the
frequency at a receiver can be outside the mentioned fundamental
frequency range. Although siren signals may be slightly different
for other countries, usually a clearly recognizable melody is defined
in respective standards which makes the described methods applica-
ble in general. For this paper, we will restrict the simulations and
discussions to German emergency signals for simplicity reasons.

To automatically detect alarms, the tonality of such sounds can
be exploited e.g. by searching for dominant peaks in spectrograms
[1, 8]. Recent approaches estimate the pitch through the autocorre-
lation function [9–11].

Beritelli et al. [12] proposed a method using a standard acous-
tical pattern recognizer to detect sirens. Artificial neural networks
(ANN) employed mel-frequency cepstral coefficients (MFCCs) that
are well-known from automatic speech recognition (ASR). The
ANN output was averaged over 400 ms windows. On their database
of self recorded sirens from Italian emergency vehicles and traffic
noise, they achieved an accuracy of 99% up to an signal to noise
ratio (SNR) of 0 dB. However, it has not clearly been stated if
Doppler effect was taken into account, i.e. if vehicle movements
were considered.

In [13], alarm detection of unknown alarms was investigated. A
common approach from ASR and a sinusoidal modeling were com-
pared to each other. The database consisted of different types of
alarms and background noises from the internet. All tests were done
at 0 dB signal-to-noise ratio (SNR). Both systems were stated to per-
form poorly.

Since a German siren signal can be seen as a four-tone melody,
the task of siren detection is similar to melody spotting. For melody
spotting, Durey and Clements [14, 15] suggested to model each
note by a hidden Markov model (HMM) [16]. Besides different
mappings of spectrograms also MFCCs were tested. The database
consisted of songs played on a keyboard, where each song was
played several times to achieve variance in the data. MFCCs turned
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out to achieve the highest accuracy (90%) among the tested features.

Siren signals often contain energy only in certain frequency
bands (fundamentals and harmonics) and the first tone is lower in
frequency than the second one, regardless of Doppler-effects, rural
and urban modes etc. Thus, an algorithm that is able to deal with
frequency shifts and is flexible in time would be beneficial for siren
detection. In computer vision, tasks dealing with objects composed
of several elements that are located anywhere in an image are very
common and researched widely. Approaches exist that use these
technologies for acoustic purposes. Ezzat and Poggio [17] proposed
an modified bag-of-features (BOF) approach for word-spotting.
Therein, 2-d patterns were extracted from mel-spectrograms. The
relative positions within an event were stored. This led to a code-
book of 2-d patches. For testing, the test sample was cross-correlated
with all codebook patches in a region around the corresponding rel-
ative position. The highest scores were collected as feature vector
inputs for a support vector machine (SVM) [18]. With only few
training data, this approach outperformed classical HMM/MFCC
combinations.

Schutte [19] adopted so called part-based models (PBM) [20]
from computer vision for classification of isolated phonemes. PBMs
consist of single parts that have a defined but deformable configura-
tion. The configuration and part appearances are modeled flexibly by
Gaussian distributions. In computer vision, PBMs are often used for
face recognition since a face is composed of different parts (e.g. eyes,
nose, etc.) but may be anywhere within an image. As features, edge-
detectors were applied on spectrograms. On a small and preliminary
test set, this led to promising results. Especially in noisy conditions,
if only certain unimportant frequency bands were corrupted, higher
accuracies were reached than using standard HMMs/MFCCs.

In this paper we propose to use of PBMs for siren detection since
they provide the required flexibility in time and frequency. In the
following, the PBMs are introduced in Sec. 2. Here, we describe
an adjustment to the initialization of the semi-supervised learning
algorithm known from the literature. Additionally, we propose a
new, discriminative approach. The experimental setup including the
database is described in Sec. 3. Results are presented in Sec. 4 and
conclusions are drawn in Sec. 5.

2. PART-BASED MODELS

A part-based model (PBM) is a compounding of M parts in a flex-
ible configuration. Thus, a PBM Θ = (A,S,E) can be defined by
its part appearances A = (a1, ..., aM ), the relative positions of parts
S = {sij |i, j = 1 . . .M} and the actual connections between parts
E. To estimate the likelihood p(I|Θ) of an image I belonging to
a model Θ, a summation over each possible configuration L of Θ
within I has to be calculated. The likelihood p(I|Θ) can be approx-
imated by the likelihood of the configuration L∗ of Θ that fits best
into the image

p(I|Θ) ≈ max
L

p(L, I|Θ) = p(L∗

, I|Θ). (1)

The likelihood p(L, I|Θ) can be separated into a contribution of ap-
pearances and relative positions

p(L, I|Θ) = p(I|L,A) · p(L|S,E). (2)

If the parts are independent of each other, the likelihoods can be
factorized into a product of single appearances

p(I|L,A) =
∏

i

p(I|li, ai) (3)

and pairwise positions

p(L|S,E) =
∏

i,j

p(li, lj |sij). (4)

The likelihoods of appearances and relative positions can be mod-
eled by probability functions like Gaussian distributions:
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1
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(6)
where w(li) ∈ I depicts an extracted part of size W from the image
I at location li. µi and Σi represent the mean and the (diagonal)
covariance matrix of appearance ai and µij and Σij the mean and
the covariance matrix of the relative position sij , respectively.

Felzenszwalb and Huttenlocher [20] developed an efficient
matching algorithm for this kind of PBM. To learn the models,
they proposed an expectation-maximization (EM) algorithm with
an initial hand-labeled model. Another possibility to develop ini-
tial models for PBMs was proposed by Crandall and Huttenlocher
[21]. Single part appearances were randomly extracted from the
positive training data X that belonged to the created model class.
The appearances were generalized by an EM. Single parts i and j
were combined to pair models Θij = (ai, aj , sij). Therefore, the
difference of the best locations l∗i and l∗j were averaged to gain the
relative positions sij . The best M − 1 pair models with a common
part r were combined to form 1-fan models Θr [21]. The model
with the maximum likelihood on X was used as initial model:

Θpos = argmax
Θr

p(X|Θr). (7a)

In this contribution, we change the extraction of appearances in the
beginning. Instead of extracting at random points, the extraction is
done at points of interest. The points of interest are detected by the
Foerstner operator [22]. The Foerstner operator locates points where
the derivation in an image is high. In a spectrogram, these are re-
gions with high energy fluctuations between adjacent time-frequency
units. To reduce the computational load, not all interest points are
used. The locations of interest points of each image/spectrogram are
clustered by kmeans into five regions. From each cluster, an interest
point is selected randomly.

The proposed initial model by Crandall and Huttenlocher [21] is
generative, i.e. only positive training samples were considered. Such
a model may not be discriminative enough for all kinds of tasks. In
contrast, a discriminative model is supposed to produce high scores
on positive samples and low ones on negative ones. Thus, we substi-
tute p(X|Θr) in Eq. (7a) by the ratio of the likelihoods of positive
and negative data:

Θneg = argmax
Θr

p(X|Θr)

p(Y |Θr)
. (7b)

Hence, by Eq. (7a) a generative initial model can be achieved
whereas Eq. (7b) leads to a discriminative one. Both of these ap-
proaches will be evaluated in Sec. 4.

In the sense of acoustic processing, I can be any kind of spectro-
temporal representation. Accordingly, a PBM for AED consists of
spectro-temporal patches in a relative and flexible time-frequency
configuration within a spectrogram.
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3. EXPERIMENTAL SETUP

3.1. Database

To evaluate the algorithm, a database of police siren signals was col-
lected. Siren signals of eight non-driving German police cars were
recorded at 16 kHz sampling frequency. The siren systems com-
prised three different producers. If possible, both the rural and ur-
ban siren was recorded. Each signal was recorded inside the police
car as well as outside (about 2 m in front of the car). The envi-
ronment was quite silent so that the recordings can be regarded as
noise free. The siren signals were trimmed to single occurrences
of one low and one high tone and embedded in a silent signal of
5 s length. Thus, 378 clean siren signals were available. To consider
the Doppler effect, the signals were artificially Doppler shifted using
standard audio sofware (Adobe Audition 1.0). A signal source with
velocities between −50m

s
to 50m

s
was assumed, that moved straight

towards/from a stationary observer. Different samples of traffic noise
were downloaded from the internet and trimmed to 5 s-samples.

For sirens and traffic, three disjunct sets were generated: A train-
ing set (250 clean sirens, 240 traffic samples), a development set (64
clean sirens, 233 traffic samples) and a test set (64 clean sirens, 237
traffic samples).

Multi condition training was performed to develop robust mod-
els, i.e. the training noise was added to the clean recordings with de-
fined signal-to-noise ratios (SNR). The SNR was calculated on the
time interval of the present siren. The SNR conditions were clean,
20 dB, 10 dB, 05 dB, 0 dB, and −5 dB. For testing, additionally
−10 dB, −15 dB and −20 dB were investigated.

3.2. Classifiers

Two kinds of classifiers were investigated: PBMs and HMMs. The
PBM used mel-spectrograms as input. The signal was windowed
by 25 ms Hamming windows with 15 ms overlap. The frequencies
ranged from 300 Hz to 4500 Hz resulting in 40 mel bands. The size
of the parts were seven mel bands and 30 time frames. In the mel-
spectrograms of the clean siren data, a 4-parts PBM was labeled as
initial model. This initial model was used for the EM algorithm on
the whole training set. For the clean condition training only clean
data was used. The multi condition training also utilized noisy sam-
ples. The resulting hand-labeled PBM will be denoted by PBM(H).

A traffic model was not developed since a siren signal also in-
cludes traffic noise and could easily be misclassified. Instead, a
threshold to distinguish the classes was considered. Therefore, the
siren model was applied to both classes in the development set. The
distributions of the scores were modeled by Gaussians. The thresh-
old was defined as the intersection between both Gaussians.

The machine learned models were initialized randomly. To
avoid random outliers in classification results, the initialization was
done with ten different random seeds. The results will be shown
by means and standard deviations over the seeds. The generative
one comprising only positive training data (Eq. (7a)) is denoted by
PBM(+), the discriminative one (Eq. (7b)) by PBM(-).

For the HMMs, the htk-framework [23] was utilized. The siren
model consisted of six emitting states for the siren. The traffic model
comprised only one state. The grammar was either traffic(optional)-
siren-traffic(optional) or traffic only. The number of mixtures was
estimated on the development set. The smallest number with high-
est accuracy was used. As features, the described mel-spectrogram
(HMM(Mel)) and MFCCs with 20 coefficients based on the mel-
spectrogram (HMM(MFCC)) were tested.

4. RESULTS
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Fig. 1. Models of PBM(+) of the multi condition training. The
means µi of the part appearances ai are plotted at the mean rela-
tive positions µij . The connections between the parts are indicated
by dashed lines.

In Fig. 1 and Fig. 2, the 20 machine learned PBMs (of all seeds)
of the multi condition training are plotted. The generative models
PBM(+) tend to model the on- and offsets of the the fundamental
frequencies and harmonics. In contrast, the discriminative model
PBM(-) prefers the stationary parts of the tones, that seem to differ
more from the traffic noise than the parts considered for the genera-
tive models. The parts of PBM(-) are ordered on top of each other.
Thus, the full time range of a siren is not as well exploited as it is
done for PBM(+).

clean multi

PBM(H) 0.79 0.86
PBM(-) 0.56± 0.16 0.85± 0.17
PBM(+) 0.59± 0.18 0.81± 0.17
HMM(MFCC) 0.76 0.80
HMM(Mel) 0.63 0.74

Table 1. Overall accuracies of the five classifiers for the clean and
multi condition training.

The accuracies of the classifiers over all SNRs are given in
Tab. 1. The accuracies are defined as the mean of the correct recog-
nition rate of the sirens and the traffic noise. The hand-labeled
PBM(H) performs best in each training condition. The accuracies
for the clean condition training over the SNRs are plotted in Fig. 3.
All tested classifiers are capable of classifying sirens with high ac-
curacy on the trained clean SNR condition. Up to 0 dB SNR, the
hand-labeled PBM(H) and the HMM(MFCC) achieve high accura-
cies over 95 % with slightly better performance of HMM(MFCC).
Below 0 dB SNR, their performances decrease down to chance level
of 50 % accuracy. The performance of the machine learned PBMs
decreases to chance level right after the clean condition. PBM(+)
shows high standard deviations meaning that the developed models
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Fig. 2. Models of PBM(-) of the multi condition training. The means
µi of the part appearances ai are plotted at the mean relative posi-
tions µij . The connections between the parts are indicated by dashed
lines.

of the seeds perform rather differently. HMM(Mel) achieves better
results than the machined learned PBMs. Up to 20 dB SNR it classi-
fies nearly optimal before the performance degrades to chance level.
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Fig. 3. Accuracies for clean condition training and different SNRs.

For the multi condition training (c.f. Fig. 4), the accuracies up
to the lower trained SNR limit of -5 dB are stable on high level. For
HMM approaches, the accuracies up to 0 dB are constant since the
loss in accuracy to the optimum results from the misclassified traffic
samples that are independent of the SNR. The most accurate clas-
sifier up to -10 dB SNR is the hand-labeled PBM(H). The second
best is the discriminative PBM(-). The machine learned PBMs per-
form better than the HMMs up to 5 dB SNR. In this SNR range,
HMM(Mel) is considerably less accurate than all other classifiers.
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Fig. 4. Accuracies for multi condition training and different SNRs.
The training comprised SNRs up to -5 dB.

5. CONCLUSIONS

The performance of PBMs for siren detection in traffic noise was
investigated and compared to standard HMM approaches. It was
shown that, for clean condition training, clean test samples could
be classified with high accuracies by all approaches. The proposed
machine learned approaches fail for all other SNRs than the learned
one. Both hand-labeled PBM(H) and HMM(MFCC) perform com-
parably well for this task.

The machine learned PBMs benefit most from multi condition
training compared to the clean training. Here, the the hand-labeled
PBM(H) and the discriminative, machine learned PBM(-) perform
better than the HMM approaches for most SNR conditions.
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