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ABSTRACT

In the context of non-stationary sinusoidal analysis two main

sinusoidal models prevail: a polynomial phase/polynomial

exponential amplitude (generalised sinusoid) and polyno-

mial amplitude complex exponential (PACE) model. Recent

advances resulted in efficient, robust and accurate parame-

ter estimation algorithms for the generalised sinusoid model

whereas the high-resolution method (HRM) for PACE model,

suffers from high computational complexity. An efficient

analysis method for high-degree complex PACE with ex-

ponential damping model is presented. Such model better

describes sinusoids with sudden drop/increase of amplitude

to/from zero, essentially forcing log-amplitude to negative

infinity, rendering the generalised sinusoid model analysis

unstable. Accuracy and computational efficiency of proposed

method are compared to the HRM.

Index Terms— Sinusoidal analysis, Polynomial ampli-

tude, Polynomial Phase, Exponential Sinusoidal Model, Poly-

nomial Amplitude Complex Exponential.

1. INTRODUCTION

The field of non-stationary sinusoidal analysis is primarily

concerned with estimating parameters of an amplitude and

frequency modulated (AM/FM) sinusoid inside one observa-

tion frame. Many methods for the two mentioned AM/FM

signal models exist [1, 2, 3, 4, 5, 6, 7, 8, 9]. Current research

evolves around 2 families of tractable models: a generalised

sinusoid model, sometimes referred to as exponentially mod-

ulated sinusoid model and the PACE model, which can be

generalised to include exponential damping factor (referred

to as Exponential Sinusoidal Model [10, 11, 12] ). The PACE

model is sometimes assumed to have complex rather than a

real polynomial amplitude - to avoid ambiguity it will be re-

ferred to as complex amplitude-complex exponential model

(cPACE) for the purpose of this paper. Extending it further to
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include the exponential damping factor it will be referred to

as cPACE with Exponential Damping - cPACED. Further, a

degree of the cPACED model will designate the degree of the

complex amplitude polynomial.

Percussion sounds can be well modelled using a sinusoid with

Gamma-tone amplitude envelope [13], therefore a desirable

model for such signals has to include an exponential damping

parameter [8] to express the exponential energy loss of a vi-

brating object without continuous energy supply. Lastly, the

main benefit of the complex polynomial amplitude compared

to the real one is the ability to encode frequency modulations

to some extent, enabling some desirable audio coding proper-

ties [14, 5].

Some low-degree cPACE methods (eg: up to second degree

polynomial [5]), require initial frequency estimates for all the

sinusoids in the signal and thus requires identification of all

salient peaks. The benefit is a joint estimation in the least-

square sense and enabling the use of a window function to

minimise the inter-sinusoid interference. On the other hand,

the methods based on rotational invariance require little extra

parameters apart from the signal itself. The cPACED model

was shown to be the most general one still tractable by meth-

ods based on rotational invariance [7]. Many versions of such

methods have been successfully used in various audio cod-

ing/analysis applications [10, 11], the main advantage being

overcoming the time-frequency resolution trade-off, inherent

to the Fourier Transform (FT). It will be shown however, that

such methods bear significant computational burden. It is

therefore desirable to construct an efficient method, able to

estimate the parameters of a high degree cPACED model.

The paper is organised as follows: in section 2 the cPACED

model and it’s relation to exponentially modulated model are

outlined. In section 3 a complex pole (the frequency and ex-

ponential damping factor) estimator using signal derivatives

is proposed and in section 4 the complex polynomial param-

eters are estimated using the complex pole estimate. Finally,

results of comparative tests are presented in section 5, while

conclusion and future work suggestions follow in section 6.
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2. CPACED MODEL

The cPACED model is defined as follows:

s(t) =a(t)e(µ0+jω0)t, (1)

a(t) =p(t) + jq(t) =
∑

k=0

(pk + jqk)t
k, (2)

where a(t) is the complex polynomial amplitude with real

polynomials p(t), q(t) and its real coefficients pk, qk re-

spectively, while µ0, ω0 are the exponential damping and

frequency parameter respectively, referred to as pole when

combined into a complex number µ0 + jω0. Such model

covers all the parameters of a Gamma-tone envelope except

the exact transient time inside the observed time frame as it is

described in [8].

Since the polynomial coefficients are complex, they affect

AM as well as FM. Transforming the polynomial into the

polar form yields the exponential AM and FM separately:

s(t) =
√

p(t)2 + q(t)2 exp

(

(µ0 + jω0)t+ j arctan
q(t)

p(t)

)

,

(3)

= exp ((µ0t+ α(t)) + j(ω0t+ φ(t))) ,where (4)

α(t) =
1

2
log(p(t)2 + q(t)2), (5)

φ(t) = arctan
q(t)

p(t)
. (6)

The Taylor series of φ(t), α(t) suggest a certain degree of am-

biguity is expected. Denoting the phase and log-amplitude

power series respectively

Mα(t) =

∞
∑

k=0

α(l)(0)

l!
tl, (7)

Mφ(t) =

∞
∑

k=0

φ(l)(0)

l!
tl, (8)

(9)

the actual linear phase parameter (i.e. frequency) is a sum of

ω0 and φ′(0) and the actual exponential damping parameter

is a sum of µ0 and α′(0). It is crucial to recognise this duality

when assessing the accuracy of the algorithm. Figure 1 shows

an example of such duality. Evaluating estimations of ampli-

tude polynomial and exponential damping separately shows

significant discrepancies, however the cumulative amplitude

envelope is much more accurate.

3. POLE ESTIMATOR USING DERIVATIVES

A Fourier Transform of signal s(t) at frequency ω, using a

window function w(t) is defined as an inner product:

Sw(ω) = 〈s, wΨjω〉 , (10)
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Fig. 1. Amplitude polynomial and exponential damping esti-

mates separately (above) and cumulative (below).

where Ψx = exp(xt). The FT of signal time derivative is

designated as

S′

w(ω) = 〈s′, wΨjω〉 = (11)

− 〈s, w′Ψjω〉+ jω 〈s, wΨjω〉 , (12)

where the second equality follows from the distribution

derivative rule [17] and implies w′(−T
2 ) = w′(T2 ) = 0,

where T is the length of the observation window. Higher

signal derivatives can be easily derived using higher window

derivatives, and further restrictions on window function ap-

ply: for l − th signal derivative w(l)(−T
2 ) = w(l)(T2 ) = 0.

The FT of the derivative of cPACED model follows:

S′

w(ω) =
∂

∂t
〈aΨβ0 , wΨjω〉 = (13)

〈a′Ψβ0, wΨjω〉+ β0Sw(ω) ⇒ (14)

〈a′Ψβ0, wΨjω〉 = S′

w(ω)− β0Sw(ω), (15)

where the pole is designated as β0 = µ0 + jω0 for compact-

ness. Time derivatives of both hand sides of 15 yield:

〈a′′Ψβ0 , wΨjω〉+ β0 〈a
′Ψβ0 , wΨjω〉 =

S′′

w(ω)− β0S
′

w(ω) ⇒ (16)

〈a′′Ψβ0 , wΨjω〉 = S′′

w(ω)− 2β0S
′

w(ω) + β2
0Sw(ω). (17)

A general expression can easily be proven:

〈

a(k)Ψβ0, wΨjω

〉

=

k
∑

l=0

S(l)
w

(

k

l

)

(−β0)
k−l. (18)
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Proof by induction: for k = 1 the above expression simplifies

to 15. Assuming 18 for some k, its derivative is:

〈

a(k+1)Ψβ0 , wΨjω

〉

+ β0

〈

a(k)Ψβ0 , wΨjω

〉

=

k
∑

l=0

S(l+1)
w

(

k

l

)

(−β0)
k−l. (19)

Inserting the induction assumption and rearranging the in-

dexes yields:

〈

a(k+1)Ψβ0 , wΨjω

〉

=

k
∑

l=0

S(l+1)
w

(

k

l

)

(−β0)
k−l −

k
∑

l=0

S(l)
w

(

k

l

)

(−β0)
k+1−l =

k+1
∑

l=0

S(l)
w (−β0)

k−l

((

k − 1

l

)

+

(

k − 1

l − 1

))

=

k+1
∑

l=0

S(l)
w (−β0)

k−l

(

k

l

)

, (20)

concluding the proof. Assuming the degree of the amplitude

polynomial is K and using the fact that for polynomial p(x)

of degree D,
∂D+1p(x)
∂xD+1 = 0, the following equation can be

obtained:

〈

a(K+1)Ψβ0, wΨjω

〉

=

K+1
∑

l=0

S(l)
w (−β0)

k−l

(

k

l

)

= 0, (21)

which is a (K + 1)th degree polynomial in respect to β0 and

it’s K roots β̂0,k, k = 1..K are the estimates for the pole

β0. Note that both α0 and ω0 are estimated jointly. The K
estimates will in general not be equal even in a noise-less case

as already outlined in [7]. The best estimate can be chosen by

maxk

∣

∣

∣

〈

s, ejℑ(β̂0,k)
〉∣

∣

∣
.

4. COMPLEX POLYNOMIAL AMPLITUDE

ESTIMATOR

Pole estimates can be used to construct a simple linear system
Ax = b:

A =

























〈

tKΨ
β̂0

, wΨjω1

〉

· · ·

〈

tΨ
β̂0

, wΨjω1

〉 〈

Ψ
β̂0

, wΨjω1

〉

〈

tKΨ
β̂0

, wΨjω2

〉

· · ·

〈

tΨ
β̂0

, wΨjω2

〉 〈

Ψ
β̂0

, wΨjω2

〉

.

.

.

.

.

.

.

.

.
〈

tKΨ
β̂0

, wΨjωR

〉

· · ·

〈

tΨ
β̂0

, wΨjωR

〉 〈

Ψ
β̂0

, wΨjωR

〉

























(22)

x =



















aK
aK−1

.

.

.

a1
a0



















b =



















Sw(ω1)
Sw(ω2)

.

.

.

Sw(ωR−1)

Sw(ωR)



















, (23)

where β̂0 = α̂0 + jω̂0 is the pole estimation acquired as de-

scribed in section 3. Solutions of above linear system give

estimates for coefficients of the complex amplitude polyno-

mial. The window function does not have to be the same as

the one used for pole estimation - restriction on edge values

does not apply. Each row of matrix A corresponds to an ar-

bitrary frequency, the most reasonable choice being the ones

carrying most of the energy of the sinusoid in question, eg:

as close to magnitude peak frequency as possible [15]. An

efficient algorithm implementation can utilise FFT bin val-

ues and zero-padding to avoid costly computation of DTFT at

specific frequencies and to adjust inter-bin frequency differ-

ence. Matrix A need not be square, many times an overdeter-

mined system is desired: the number of estimation frequen-

cies R can be larger than the number of unknowns K . Such

systems can solved on least-square basis via Moore-Penrose

matrix pseudo-inverse A+:

A+ = (A∗A)+A∗ = (A∗A)−1A∗, (24)

where A∗ designates a conjugate transpose of matrix A and

A−1 = A+ if A is square.

5. TESTS AND RESULTS

A polynomial amplitude of degree 4 was studied, the polyno-

mial denoted as: [a3, a2, a1, a0] = [p3 + jq3, p2 + jq2, p1 +
jq1, p0 + jq0]. The test values for p3, p2, p1 were chosen so

all the terms of the amplitude polynomial have equal impact

on the final value:

p3 ∈

[

−

(

fs

2T

)3

,

(

fs

2T

)3
]

(25)

p2 ∈

[

−

(

fs

2T

)2

,

(

fs

2T

)2
]

(26)

p1 ∈

[

−
fs

2T
,
fs

2T

]

. (27)

Exact same value sets were used for the imaginary part of

the polynomial q(t). A Hann3 window function of length

512 samples was used for pole estimation and Hann window

for the complex polynomial coefficients estimation. Damping

factor was varied in the bounds [-100,100] and only one fre-

quency of 1000Hz was considered. For each parameter except

frequency, only the 2 extreme values and 0 have been tested

in order to keep computational time reasonable. The com-

parison to a 4th degree (i.e. 4 poles and amplitudes) simple

high-resolution method implementation from DESAM Tool-

box [16] (section 5.1.2.) without whitening was conducted.

The signal tested is the real part of the complex cPACED sig-

nal, reflecting the real world scenario when analytical signal

isn’t available.

To measure accuracy, the commonly used Signal-to-Residual-

Ratio (SRR) metric was used:

SRR =
〈s, ws〉

〈s− ŝ, w(s − ŝ)〉
, (28)
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where s, ŝ are the original signal (without noise) and the es-

timated signal respectively, and w the Hann window. The

Signal-to-Noise-Ratio (SNR) range from [50,-20] was stud-

ied. The total computation times for both methods follow:

Proposed method 28s

High-resolution 5400s
(29)

Since HRM involves singular value decomposition of corre-

lation matrix of size N/2×N/2 the computation cost is sig-

nificantly higher as the proposed method only requires K − 1
FFTs for the pole and K DTFTs for the complex polynomial

estimates.

Classic Cramer-Rao bounds (CRBs) parameter-by-parameter

comparison would total to 10 plots (8 for the real/imaginary

polynomial coefficients and 2 for the pole), overcomplicating

the results and obscuring the overall accuracy. A more intu-

itive approach would involve only one SRR/SNR plot, thus

a different upper accuracy bound is required. A near per-

fect estimator can be constructed by substituting the pole es-

timates with actual poles and solving the linear system 22.

Mean and variance of the SRR, computed with the aforemen-

tioned estimator represents a good upper SRR bound. Fig-

ure 2 depicts the mean and variance of the baseline estima-

tor, proposed method and HRM. At low SNR the methods

perform roughly the same, HRM reaching the upper bound

while proposed method performing 2dB below. At high SNR

both methods reach a plateau, however the proposed method’s

plateau is about 10dB higher.
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Fig. 2. SRR: Mean and variance

6. CONCLUSION AND FUTURE WORK

In this paper a novel method for analysing cPACED sig-

nals was represented, tested and compared to the HRM.

In conducted tests the HRM performs marginally better in

high noise cases, while the proposed method performs sig-

nificantly better in low-noise cases. More rigorous testing,

involving multicomponent signals is required, but is out of

scope of this document.

While HRM is a computationally intense method, designed

to jointly estimate parameters of multiple cPACED sinusoids

in the entire frequency range, the proposed method focuses

on a narrow frequency range to estimate a single cPACED si-

nusoid. The flexibility of HRM is a huge overkill for the tests

conducted, which is reflected in substantially higher (about

2 degrees of magnitude) computational costs. However the

proposed method could be invoked on different frequency

ranges, effectively covering the whole spectrum. The ad-

vantage of the proposed method in this case is the ability to

process only certain frequency regions of interest, reducing

the final computational cost.

The pole estimator is inspired by the generalised reassign-

ment method [2], imposing significant requirement on the

number and type of the window function. Such window set

usually exhibits suboptimal time-frequency properties and

quickly reduces the condition number of the resulting linear

system to a value too low to handle even using very high pre-

cision computation. The distribution derivative method [17]

circumvents this problem by constructing the linear system

using FT values at different frequencies, rather than using

a single FT value, but using different windows. A version

of proposed method, that does not impose the window re-

quirement would enable an extremely accurate, very high

degree cPACED analysis and would, analogously, correspond

to the distribution derivative method. cPACE model is well

suited for analysis of close frequency non-stationary sinu-

soids, as the amplitude beating function can be much better

approximated with a polynomial than a generalised sinusoid,

thus coding such signals is expected to be of higher accuracy

compared to the generalised reassignment.
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[4] S. Muševič and J. Bonada, “Comparison of non-

stationary sinsoid estimation methods using reassign-

ment and derivatives,” in Proc. 7th Sound and Music

Computing Conf., Barcelona, Spain, July 2010.

[5] Y. Pantazis, O. Rosec, and Y. Stylianou, “Adaptive

am/fm signal decomposition with application to speech

analysis,” Audio, Speech, and Language Processing,

IEEE Transactions on, vol. 19, no. 2, pp. 290 –300, feb.

2011.

[6] G.P. Kafentzis, Y. Pantazis, O. Rosec, and Y. Stylianou,

“An extension of the adaptive quasi-harmonic model,”

in Acoustics, Speech and Signal Processing (ICASSP),

2012 IEEE International Conference on, march 2012,

pp. 4605 –4608.

[7] R. Badeau, B. David, and G. Richard, “High-resolution

spectral analysis of mixtures of complex exponentials

modulated by polynomials,” Signal Processing, IEEE

Transactions on, vol. 54, no. 4, pp. 1341 – 1350, april

2006.

[8] M.G. Christensen and S. van de Par, “Efficient paramet-

ric coding of transients,” Audio, Speech, and Language

Processing, IEEE Transactions on, vol. 14, no. 4, pp.

1340 –1351, july 2006.
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