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ABSTRACT

A novel, data-driven approach to voice activity detection is presented.
The approach is based on Long Short-Term Memory Recurrent Neu-
ral Networks trained on standard RASTA-PLP frontend features. To
approximate real-life scenarios, large amounts of noisy speech in-
stances are mixed by using both read and spontaneous speech from
the TIMIT and Buckeye corpora, and adding real long term record-
ings of diverse noise types. The approach is evaluated on unseen
synthetically mixed test data as well as a real-life test set consisting of
four full-length Hollywood movies. A frame-wise Equal Error Rate
(EER) of 33.2% is obtained for the four movies and an EER of 9.6%
is obtained for the synthetic test data at a peak SNR of 0 dB, clearly
outperforming three state-of-the-art reference algorithms under the
same conditions.

Index Terms— Voice Activity Detection, Speech Detection,
Neural Networks, Long Short-Term Memory

1. INTRODUCTION

Voice activity detection (VAD), also referred to as speech activity
detection, is an important first step in many speech-based systems.
It is important for Automatic Speech Recognition (ASR), to avoid
word insertions due to noise and background speech; it is also used
in audio coding to save bandwidth, and in multi-party conference
systems, for example, to reduce the amount of background noise.

Early approaches to VAD were based on simple energy thresh-
olds or pitch and zero-crossing rate rules (cf. [1]). These approaches
perform well in settings where there is little or no background noise.
More recent approaches consider more advanced parameters like
autoregressive (AR) model parameters [2] and line spectral frequen-
cies (LSPs). The most promising approaches in highly corrupted
conditions seem to be data-driven methods, where a classifier is
trained to predict speech vs. non-speech from acoustic features (cf.,
e. g., [3]). Still, the performance of such approaches degrades when
background noise with spectral characteristics similar to speech is
present. Very recent studies suggest that the use of long-span features
clearly improves the robustness in real-life and noisy settings because
the decision for each frame can be performed in the context of the
previous frames [4].

In this light, we propose a novel approach, which uses traditional
frame-wise features, but where the classifier is capable of learning
the dynamics of the inputs and adaptively using previous inputs for
the decision of the current frame. In Section 2 we present three
state-of-the-art statistical VAD algorithms, some of which use context
information in a rule-based fashion, which we will use as baselines
in our evaluation. Next, in Section 3 we introduce our proposed
approach. The data-sets used for evaluations are described in Section
4. We use both synthetic data of spontaneous and read speech in

controlled noise conditions, and audio tracks of Hollywood movies
containing highly non-stationary noise. Results are presented in
Section 5; we conclude our findings in Section 6 and discuss our
work in the context of prior work in Section 7.

2. STATE OF THE ART STATISTICAL VAD ALGORITHMS

In this Section the three baseline, state-of-the-art VAD algorithms
[2, 5, 6] designed for the use in noisy conditions are briefly presented.
They all belong to the category of statistical methods, where a Likeli-
hood Ratio (LR) test is applied to the hypotheses of speech presence
(denoted as H1) and speech absence (H0), on a certain frame of the
observed noisy signal xt = st+nt, where st and nt denote the clean
speech and the noise signal, respectively.

2.1. Sohn’s approach (SOHN )

The VAD proposed in [5] is based on a statistical model in the time-
frequency domain for the derivation of the LR test. Given S, N, and
X the DFT coefficient vectors of dimension L at the current frame
m, for the speech, noise and noisy speech signals, respectively, the
probability density functions conditioned on H0 and H1 are:

p(X|H0) =

L−1∏
k=0

1
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}
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where λN (k) and λS(k) are the variances ofNk and Sk, respectively,
i. e., the k-th terms of vectors N and S. The LR for the k-th frequency
bin is given by:
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where ξk ,
λS(k)

λN (k)
and γk ,

|Xk|2

λN (k)
are the a-priori and a-

posteriori signal-to-noise ratio (SNR) [7]. The decision rule is based
on the log-LR function at the current frame m, which is obtained by
averaging the log-likelihood ratios for each frequency bin, as follows:

L(m) = log Λ(m) =
1

L

L−1∑
k=0

log Λk
H1

≷
H0

η (3)

where η is the decision threshold. A hangover mechanism, based on
relationship between consecutive speech frames, is also implemented
to reduce the false negative occurrences.
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2.2. Ramirez’ approach (RAM05)

The algorithm proposed in [6], as the one in [8], is based on the con-
cept that more consecutive speech frames concur into the definition
of the LR function. Given the M noisy observation DFT coefficient
vectors X1,X2, ...,XM involved in the two-class classification prob-
lem, the Multiple Observation - LR (MO-LR) Test over a window of
2M + 1 frames centered on frame m is the following (assuming that
the vectors Xj are independent and taking the logarithm):

L(m) = log ΛM (m) =

m+M∑
j=m−M

log
p(Xj |H1)

p(Xj |H0)

H1

≷
H0

η (4)

where m denotes the frame on which the decision is performed. The
MO-LR function can be recursively calculated. The same statistical
model explicited in (1) has been considered here.

2.3. AR-GARCH based approach (ARG)

The algorithm proposed in [2] is based on the idea of modelling
the speech signal by means of an AR-GARCH (autoregressive-
generalized autoregressive conditional heteroskedasticity) model in
the time domain. These are the main steps of the algorithm:

• Estimation in the time domain of the noise variance σt by
means of the IMCRA algorithm [9] and noisy signal normal-
ization by this value;

• For each time instant t, estimation of, first, the AR-GARCH
parameter vector θ, by means of a Recursive Maximum Likeli-
hood (RML) updating rule, and then of the clean signal in the
Minimum Mean Square sense, by exploiting the knowledge of
the θ vector;

• VAD decision on a frame-by-frame basis, by using the esti-
mated clean speech over all observation windows.

Focusing on this last step, the likelihood ratio Λ(m) is obtained by
averaging the LRs calculated for each time step. In order to take
the correlation between adjacent signal samples into account, and to
derive the final decision rule, the vocal activity is then modelled as a
first-order Markov model, so that:

L(m) = Pm|m =
ΛmPm|m−1

ΛmPm|m−1 + (1− Pm|m−1)

H1

≷
H0

η (5)

where Pm|m and Pm|m−1 are the rules obtained by using and not-
using the vocal activity information of the m-th frame, respectively.

3. PROPOSED LSTM-RNN VAD

In this paper we present a novel data-driven method for voice activity
detection based on (unidirectional) Long Short-Term Memory Recur-
rent Neural Networks (LSTM-RNN) [10]. The motivation behind the
use of LSTM-RNN is their ability to model long range dependencies
between the inputs. Other common data-driven VAD approaches,
such as those based on GMM (cf. section 7) or Feed-Forward Neural
Networks do not consider any temporal dependencies in the model.
Delta features, modulation or long-span features [4] are used to over-
come these issues. Standard Recurrent Neural Networks (as used
in [11] for VAD), are able to model a limited amount of temporal
dependency. However, LSTM-RNN go beyond simply using context
information by introducing the concept of a memory cell that can
be read, written and reset depending on feature context and previous
outputs, by means of multiplicative input, output and forget units

whose multiplicative weights are learned automatically during train-
ing. Thereby, they learn when to access which parts of past context,
solving the vanishing gradient problem of traditional RNNs [12].

The networks we use for VAD have an input layer which matches
the size of the low-level acoustic feature vectors, one or more hidden
layers, and an output layer with a single linear unit. The networks are
trained as regressors to output a voicing score for every frame in the
range [-1; +1]; +1 indicating voicing, -1 indicating silence or noise.
Two neural network topologies are investigated:

• N1: 1 recurrent hidden layer (4 blocks with 50 LSTM cells
each)

• N2: 3 recurrent hidden layers (50 LSTM cells in one block;
10 sigmoid neurons; 20 LSTM cells)

On the input side of the networks we use a standard RASTA-
PLP [13] frontend with cepstral coefficients 1–18 and their first order
delta coefficients. The frame size is 25 ms and the frame step is 10 ms.
It is important to highlight that the 36 dimensional feature vector does
not contain an energy coefficient (e. g., 0-th cepstral coefficient). We
decided for this to make the networks input level invariant. Features
were extracted with our openSMILE toolkit [14] and z-normalization
was applied to all features (mean zero, variance 1). The means and
variances for the z-normalization are computed from the training set
only. The LSTM-RNNs were trained and evaluated with the rnnlib
by Alex Graves [15].

Training is performed with the backpropagation through time
(BPTT) algorithm; the weights are updated using the gradient descent
algorithm with a learning rate of 10−5 and momentum 0.9. This
requires weights to be initialized with non-zero values, thus we ini-
tialize the weights with uniform random values sampled from ]0; 0.1].
To increase robustness against convergence into a suboptimal local
minimum of the weight space, we train three networks with different
random weight initialisations. Network predictions for the test and
validation set are then computed by averaging the predictions for all
three networks. To further enhance generalisation, we added Gaus-
sian noise with zero mean and standard deviation of 0.3 to all inputs.
To avoid over-adaptation, a maximum of 40 training epochs was run.
Further, training was stopped early if there was no error improvement
over 10 epochs. The frame-wise root mean quadratic error between
the targets and the network predictions is used as evaluation criterion
during network training.

The computational complexity for evaluating the networks is
linear with respect to the number of input frames. For every frame
a constant number of operations needs to be performed. Many com-
putations can be run in parallel, which is ideal for implementation
on embedded hardware such as Digital Signal Processors (DSPs)
or Field Programmable Gate Arrays (FPGAs). The asymptotically
quadratic complexity wrt. the network size can be drastically reduced
in practice by the chosen block structure of the hidden layers.

4. DATA SETS

To obtain a large amount of labelled and diverse speech data for
training and validating the networks, we synthesise data by building
random utterance sequences overlaid with additive noise. The speech
data is taken from the Buckeye [16] and the TIMIT corpus [17].
The Buckeye corpus consists of 26 h of spontaneous speech from
40 speakers (20 male, 20 female) recorded in informal interview
situations. Only the subjects’ speech is used, and speaker turns
corresponding to utterances between silence segments of at least 0.5 s
are extracted according to the automatic alignment delivered with
the Buckeye corpus. The corpus is split subject-independently into a
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training, validation and test set, respecting stratification by age and
gender. The segmentation and subdivision is exactly equal to the
one used in [18]. The original TIMIT training set is split speaker-
independently into a training and validation set. Speech for the
VAD test set is taken from the original TIMIT and Buckeye test sets.
Four types of noise are used: babble, city, white and pink noise, and
music. The babble noise recordings are taken from the freesound.org
website. Samples from the categories pub-noise, restaurant chatter,
and crowd noise are joint. The music recordings are instrumental and
classical music pieces from the last.fm website. The city recordings
were recorded at TUM in Munich, Germany with smartphones while
people where cycling and walking through the city. White and pink
noise samples were generated with pseudo random number generators
and a bandpass filter.

The noise samples used for synthesising the VAD training, val-
idation, and test samples are fully disjunctive (i.e., different pieces
of music, different babble samples, etc.). Noise samples for the test
and validation sets are 30 minutes each, the remaining noise audio is
used for the training set. The lengths of these samples varies from 94
minutes (babble) to 176 minutes (music).

Each synthetic utterances in the VAD training set is composed
of N ∈ {1, . . . , 5} original speech utterances, which are randomly
selected either from TIMIT or Buckeye. A pause before the first
utterance, pauses between all utterances, and a pause after the last
utterance are inserted with a uniformly random length of 0.5 to 5
seconds. Each of the original utterances is normalised to have a
peak amplitude of 0 dB and then all N normalised utterances are
multiplied with a uniformly random gain factor gs,lin = 10

gs
20.0

where gs ∈ [+3 dB;−20 dB]. For 80 % of the synthetic utterances, a
random noise sample, which matches the total length of theN speech
utterances and the N + 2 pauses, is selected from the training noise
pool and normalised to a peak amplitude of 0 dB. A multiplicative
gain gn,lin according to equation (6) is applied to the noise segment:

gn,lin = 10(log(gs,lin)−SNR
20.0

) (6)

The SNR is randomly chosen for each mixed instance as SNR ∈
[−6dB; +25dB]. The remaining 20% of all synthetic utterances
are not overlaid with noise. 1 948 instances are created with speech
from Buckeye. This corresponds to 15 h of total audio, where 6:43 h
are non-speech and 8:17 h are speech. From TIMIT speech, 3 493
instances are generated. This corresponds to 19:45 h of total audio,
where 12:54 h are non-speech and 6:51 h are speech. In total there is
34:54 h of audio in the VAD training set.

The validation set is built in a similar way, however one single
mixed instance each with a total length of 22.5 minutes is generated
from Buckeye speech and TIMIT speech. The gain of each of the
original utterances is varied randomly over the same range as for the
training set, and pauses are added using the same parameters. This
same sequence of speech utterances and pauses is overlaid with four
continuous 30 minute segment of babble, music, city, and white+pink
noise (all normalised to 0 dB peak amplitude). A fixed gain gn,lin is
chosen for this noise segment as gn,lin = 0.5(gµs,lin + gmins,lin), where
gµs,lin and gmins,lin are the average and minimum multiplicative gain
factors of the speech utterances. In total, the VAD validation set has
3 h of audio, where 1:22 h are speech and 1:38 h are non-speech.

For the VAD test set, 15 minute long mixed instances are created
each from TIMIT and Buckeye speech. Thus, the total length of each
test instance is 30 minutes. The clean version of the 30 minute test
audio contains 12 minutes of speech and 18 minutes of silence. A
single fixed gain of -6 dB for the clean speech is applied and noise is
added with a peak SNR (noise gain relative to speech gain) of 0 dB.

Table 1: Frame-level results for validation and test set of netsN1 and
N2 and the RAM05, ARG, and SOHN algorithms. Area under
ROC curve (AUC), Equal Error Rate (EER), and combined error rate
(false negative rate (FNR) + false positive rate (FPR)) computed with
a threshold estimated from the validation set. Test set: -6 dB gain
applied to original speech signal, average SNR is 0 dB.

AUC
set N1 N2 RAM05 ARG SOHN
validation .814 .838 .713 .685 .709
test clean .980 .985 .955 .962 .959
test babble .909 .932 .877 .875 .826
test music .921 .940 .725 .675 .677
test city .968 .972 .928 .935 .931
test noise .941 .949 .878 .773 .878
test ALL .951 .961 .821 .794 .805
[%] FNR + FPR
validation 53.69 52.33 72.19 67.95 68.77
test clean 12.99 11.65 14.64 13.67 13.52
test babble 36.73 26.21 66.55 59.23 76.01
test music 31.03 27.13 79.96 88.94 82.21
test city 17.61 16.63 28.11 31.48 29.67
test noise 23.26 23.14 66.75 64.45 61.31
test ALL 24.18 20.95 52.82 51.54 53.22
[%] EER
ALL 10.41 9.55 26.58 25.85 26.99

To test the VAD in challenging real-life conditions, we use a
second test set consisting of the full English audio tracks of four
Hollywood movie DVDs. The choice of these movies was inspired
by the official development set of the 2012 MediaEval campaign’s
violence detection task [19]. Speech and non-speech segments in
those four movies were manually annotated. The list of movies and
statistics on speech / non-speech segments are found in Table 2.

5. RESULTS

Results for the synthetic test and validation sets are given in Tab. 1.
We use two evaluation metrics: the area under receiver operating
characteristic (ROC) curves (AUC) and the combined error rate (false
positive rate (FPR) + false negative rate (FNR)). Fixed thresholds
which correspond to the thresholds at the Equal Error Rate (EER) on
the validation set are used for all test set evaluations to ensure the
test data is fully unknown to the system. For nets N1 and N2 the
thresholds are -0.268 and -0.071, respectively. The same thresholds
are used for the DVD movie test set. For FPR and FNR compu-
tation, the thresholded predictions (both for reference and LSTM)
are smoothed with a silence hysteresis of 5 frames (i. e., non-speech
segments shorter than 5 frames are joined with the adjacent speech
segments). We observe that both the N1 and N2 network topologies
outperform all baseline algorithms in terms of both AUC and FNR
+ FPR, and notably also for clean speech. The largest margin of im-
provement is found for music, babble, white and pink noise. On city
noise, the baselines are relatively robust, which can be attributed to
the fact that the average energy of these noise samples is much lower
than the peak amplitude (e. g., loud cars passing by). The ROC curves
for the proposed and the baseline algorithms are shown in Figure 1.
The ‘smoothness’ of the curves for the proposed approach compared
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Fig. 1: Receiver operating characteristic (ROC) curves for VAD on
synthetic test set: True-positive-ratio (TPR) vs. false-positive-ratio
(FPR) and area under curve (AUC) for AR-GARCH [2] (i), Ramirez’
approach [6] (ii), Sohn’s approach [5] (iii) and the proposed LSTM-
RNN approach (iv) using network topologies N1 and N2.
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to the baselines is due to the modeling as a regression task in training,
which delivers a ‘continuum’ of scores in testing. As to ROC, the
behaviour of the two network topologies is nearly identical. The
EER across validation and test sets is around 10 % for both network
topologies as opposed to 25 % and above for the baseline algorithms.

The results for the movie test set are given in Tab. 3. Compared
to the synthetic test set, the performance of our method and SOHN
on the movie test set is much lower. However, the networks still
clearly outperfom SOHN . Note, that the results for RAM05 and
ARG could not be obtained due to the high computational complexity
of these algorithms, but given the test set results we estimate their
performance to be similar to SOHN . One main reason for the
reduced performance on the movie set might be that many noise
types occur that have not been seen in training, such as gunshots,
fighting, etc., and noises that are easy to confuse with speech, such
as animal sounds. Another reason is the coarse annotation style of
speech segments; for the sake of efficiency, longer conversations were
labelled as continuous speech segments, even though they included
small pauses. In the evaluations this results in a higher miss rate than
is actually given. Compared to [3] (25.3% EER on YouTube videos)
our EERs are very competitive, considering that their system was
trained on in-domain data. Next, a comparison of both approaches on
YouTube videos and Hollywood movies would be highly interesting.

6. CONCLUSION AND OUTLOOK

In this paper we have presented a novel VAD approach based on
LSTM-RNN. We further presented a method for synthesising training
data for the LSTM-RNN to approximate real-life settings without
the need for in-domain data. We demonstrated the feasibility of this
approach on real-life noisy speech data from Hollywood movies, and
we showed that LSTM-RNN outperforms all three statistical VAD
baselines. This is all the more notable since our method does not
require future context, unlike the RAM05 and SOHN methods.

Future work will investigate the performance of LSTM-RNNs in
more detail, analysing the context learning behaviour in comparison
to GMMs, MLPs and RNNs using time-frequency or modulation

Table 2: Movie test set. Movie length and percentage of parts with
speech; min., mean, max. duration of continuous speech segments.

Title [hh:mm] % sp. min/mean/max [s]
I Am Legend 1:36 39.2 0.5/21.4/174.9
Kill Bill Vol. 1 1:46 33.9 0.4/39.3/321.2
Saving Private Ryan 2:42 48.6 0.5/25.2/230.4
The Bourne Identity 1:53 40.7 0.6/32.6/185.6

Table 3: Frame-wise results for the movie test set of netsN1 andN2
and the SOHN algorithm. Area under ROC curve (AUC), Equal
Error Rate (EER), and combined error rate (false negative rate (FNR)
+ false positive rate (FPR)) computed with a threshold estimated from
the validation set. Results for RAM05 and ARG are not included due
to their heavy computational load on the large DVD test set.

AUC
movie N1 N2 SOHN
I Am Legend .704 .676 .567
Kill Bill 1 .627 .601 .554
Saving P. .743 .680 .577
Bourne Id. .685 .647 .603
ALL .722 .676 .556
[%] FNR + FPR
I Am Legend 76.65 75.57 94.90
Kill Bill 1 94.14 94.41 102.88
Saving P. 67.03 81.70 92.46
Bourne Id. 70.83 80.10 90.95
ALL 69.87 78.03 95.52
[%] EER
ALL 33.18 36.76 45.73

spectrum features. Furthermore, using semi-supervised and active
learning to efficiently adapt the generic models presented in this paper
to specific use cases such as movies or web videos will be attempted.

7. RELATION TO PRIOR WORK

Many previous approaches to VAD rely on Gaussian mixture mod-
eling and adaptation as typical for ASR, to adapt the VAD models
to speakers [20] and background noise [21–23], in contrast to the
proposed discriminative approach. [24] adapts GMMs to channel
and noise conditions. [25] proposes to couple VAD with the acoustic
models in the recogniser, whereas the proposed approach does not
rely on phonetic modeling. Use of temporal context in data-based
approaches has been proposed, e. g., by [26] who use PLP based and
similar, more advanced temporal features combined with GMMs. [4]
compares a standard GMM system using 14 PLP cepstral coefficients
with a Multi-Layer Perceptron (MLP) based system using Long-Span
acoustic features computed over .5 seconds windows. MLP based
speech/non-speech posteriors are then decoded with two ergodic Hid-
den Markov Models (HMMs). However, these systems do not use
adaptive context learning as by LSTM-RNN. [3] compares GMM
with a discriminative classifier and proposes novel features instead
of standard MFCC/PLP frontends. Real noisy, manually labelled
YouTube videos are used for evaluation, but only in-domain training
is considered.
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