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ABSTRACT

In this paper, we propose an acoustic fusion based approach to clas-
sify the traffic density states. In particular, we combine the informa-
tion from mel-frequency cepstral coefficients (MFCC) based classi-
fier, which models the cumulative road side signal and honk event
based classifier. Honk based classifier is obtained by modeling the
honk statistics for each traffic class, viz., Jam, Medium and Free.
We study in detail the discriminative capabilities of honk informa-
tion based classifier. Decisions from MFCC and honk classifier are
then combined in probabilistic framework with an appropriate fusion
strategy. We also propose to use prior honk information in-order to
further improve the classification results. Classification results show
good performance even with 10s of audio data.

Index Terms— Traffic state detection, Acoustic modeling, fu-
sion, honks, MFCC

1. INTRODUCTION

Traffic congestion is an important problem around the world and
is more rampant in the developing regions like South-East Asia.
Knowing the traffic conditions at all the locations could help au-
thorities to regulate the traffic flow. Magnetic loop detectors[1] are
used in several developed nations to sense the traffic. These tech-
niques involve a heavy implementation cost and are also not readily
applicable in the developing regions, because of non-lane based and
chaotic traffic conditions. A video showing chaotic traffic conditions
in developing regions is present in [2]. Video imaging based tech-
niques have been proposed for traffic sensing[3], however they too
have similar limitations of cost and assumptions of orderly traffic
conditions. Recently acoustics based traffic sensing techniques have
been proposed [4] [5]. Acoustic sensor based approach is lucrative
because of its ability to sense traffic states even in chaotic traffic con-
ditions and also due to its low implementation cost. Road side cumu-
lative acoustic signal is a mixture of vehicular noise mainly consist-
ing of tire noise, engine noise, air turbulence, and honks[6]. Acoustic
signals are distinctly different for different traffic conditions namely
Jam (0 − 10kmpH), Medium (10 − 40kmpH) and Freeflow (>
40kmpH). Free condition is dominated by air-turbulence and tire
noise, while jam condition has engine idling noise and honks.

Vivek et al.[4] proposed MFCC based traffic state classifier.
Cumulative signal was characterized using MFCC features and
modeled using Gaussian mixture models (GMM). In [4] data was
recorded in a controlled setting with an omni-directional micro-
phone, while we collected in a more general setting using smart
phones, so that data can be obtained by a single fixed sensor and
even by participative sensing[7]. Although impressive results were
shown for MFCC classifier in [4], we obtained relatively poor

results with data collected in more general settings using smart
phones. Hence there was a scope and need for further improvement
in the classification results. During the data collection process, it
was observed that along with speed of vehicles, honks were also
indicative of traffic condition. This motivated us to use the honk
information along with information captured by MFCC classifier to
make more accurate decisions. Although MFCC classifier models
the cumulative signal (which contain honks), explicit modeling of
honk information is not done. Honk classifier is built by modeling
the number of honks observed for each class. In this paper, we study
in detail, the characteristics of honk information based classifier and
propose a fusion classifier, combining the decision of MFCC and
honk classifiers alone. We use probabilistic framework to combine
the decision of MFCC and honk classifier. Classification accuracy
of fusion classifier is better than MFCC and honk classifiers. The
classification accuracy was further improved by using prior honk
information, even with just 10s of acoustic data.

Since acoustic signals for three traffic states had distinctly differ-
ent spectral content[4], MFCCs were used as basic parameterization,
which capture the spectral shape of the signal. In this paper, MFCC
classifier is implemented as explained in [4]. The short time Fourier
transform (STFT) of acoustic signal is obtained by windowing the
signal with the window size of 100ms. It is then passed through
a filter-bank followed by log compression. Finally 13 dimensional
coefficients are obtained by applying discrete cosine transform on
the log filter-bank coefficients. Delta and delta-delta coefficients are
appended to obtain final feature vector of 39 dimensions. The next
frame is obtained by shifting the window with a shift size of 50ms.
GMMs were used to model the MFCC features and were shown to
perform well in [4]. GMMs also easily provide soft decision and
hence is more suitable (than discriminative classifiers) for fusion ap-
proach.

1.1. Relation to prior work

There have been few recent approaches proposed for using audio
data in traffic sensing [4] [8] [9] [10]. In our proposed approach, we
explicitly model the honk information along with MFCC based clas-
sifier proposed in [4]. Rijurekha et al. [8][5] proposed a two-sensor
based architecture using honks signals to estimate traffic state. Our
approach is different from [5] in terms of architecture (requires only
single sensor) and also in approach of modeling the sources of in-
formation. Approach in [5] heavily relied on the honks, while in
our proposed approach the final decision is based on weighted likeli-
hoods of MFCC and honk classifier, weighted according to the con-
fidence in the each classifier. In [10] acoustic sensor network is used
to estimate the speed of vehicle by calculating acoustic time delay
from one sensor to other. However, in a chaotic traffic conditions,
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this approach may not perform well due to interference from other
noises, which is not well addressed. In [9], a combination of smart
phone sensors are used which also use audio as one of sensor inputs.

The rest of the paper is organized as follows: In section 2, sys-
tem architecture is explained, followed by honk based classifier in
section 3. Section 4 contains fusion strategy followed by experi-
mental results in section 5 and conclusion in section 6.

2. SYSTEM ARCHITECTURE AND DATA COLLECTION

The system architecture consists of a single microphone installed
road-side to record the audio data and a transmitter to send the au-
dio data along with the location information to a centralized server.
Data can also be sent by participatory sensing with people uploading
the data using smart phones to the central server[7]. All the process-
ing and classification is done at the central server. Poller checks
for the data and traffic state is updated for every one minute. Even
though decision is made at every minute, whole one minute audio
might not be available due to latency and bandwidth cost constraints.
320kbytes of data need to be transmitted to send 10s of data sam-
pled at 16kHz. Using larger audio would also discourage participa-
tive sensing. Hence we attempt to get improved results with as small
as 10s of audio data. The sample demo describing the architecture
is present in [2]. The current architecture receives the data that is
uploaded from the smart phones. Fixed sensors on the road-side are
yet to be deployed.

Data Collection: Since the fixed sensors are not yet deployed,
audio data was recorded from Samsung Galaxy S2 smart phone.
Data was collected from two cities in India, namely New Delhi and
Hyderabad. Approximately 3 hours of data was collected from Delhi
with 1 hour of each traffic state (jam, medium and free) and the sam-
pling rate was 16kHz. Around 1.5 hours of traffic data was collected
from Hyderabad location, with ∼ 30 minutes of each traffic state.
The entire data-set and details about the data collection is present in
[2]. Delhi data was divided into train and test sets and are referred
as DL-Train and DL-Test respectively. Hyderabad data is used only
for testing and is referred as HD-Test.

3. HONK STATISTICS BASED CLASSIFIER

Number of honks at a particular location could provide useful infor-
mation about the traffic state. In general, more number of honks (ob-
served over a certain time interval) would correspond to jam condi-
tion. Although honking would depend on the attributes of the driver
and location of driving, a more chaotic condition would naturally
provoke a tendency and the need to honk. Hence we wish to lever-
age honk information and study the discriminative capability present
in the honk information. In this section we describe a honk statistics
based classifier for traffic state estimation. The term Honk Statistics
mentioned in the paper correspond to percentage of honk frames in

a defined time interval. Honks have been previously used in [5] [9]
as one of the feature vector in their discriminative classifiers. While
in this paper, we build separate classifier by modeling the honk in-
formation using generative models.

Fig. 1 shows the block diagram of honk statistics based classifier
which essentially involves a training and testing phase. The training
steps are as explained below:

1. Short time Fourier Transform (STFT): Audio signal is di-
vided into frames with window size of 100ms and shift size
of 50ms as used for MFCC classifier. FFT is then applied on
the windowed signal.

2. Honk detection: Honks frames are detected from the STFT
of the audio signal. In section 3.1 two honk detection algo-
rithms are discussed.

3. Accumulation of honk statistics over defined time inter-
val: Percentage of the honks frames (honk statistics) within
a defined time interval is calculated. This time interval is re-
ferred to as accumulate time interval denoted by Tacc. For
Tacc = 10s, there are 200 frames (with frame shift size of
50ms). Honk detection is done for each frame. Percentage
of honk frames is then calculated from 200 frames which cor-
responds to Tacc = 10s. Approach to decide the Tacc is ex-
plained later in the section 3.3.

4. Model the traffic class: Models are built for each traffic class
with percentage of honks as the discriminating feature. Per-
centage of honks is calculated over time Tacc. Model param-
eters change significantly with the different choice of Tacc.
Hence it is important to choose an appropriate Tacc.

Testing phase is explained in the Fig. 1. Given the audio signal,
honk statistics are obtained for the defined time interval (Tacc) as
explained in training steps and in Fig. 1. Each class likelihoods are
then calculated using the respective trained models. Finally, decision
is made based on the maximum likelihood approach for every Tacc

secs.
In the following subsections we describe honk detection algo-

rithm followed by choice of class densities to model the traffic states.
Finally in section 3.3 classification results are reported along with
the approach to choose Tacc.

3.1. Honk Detection Algorithms

Honk frames are typically characterized by number of harmonic
peaks in the frequency range of 2kHz to 4kHz, referred to as
honk frequency range. Peak to Average amplitude approach was
discussed in [8], however it was sensitive to spurious honks. Here
we also investigate Variance based approach which we find is more
robust to spurious honks.

• PeakvsAvg: This approach was explained in [8] (referred as
PeakvsAvgAllFreq) where ratio of Peak amplitude to Aver-
age amplitude is compared with a threshold (T ) to detect the
honk frame. Peak amplitude is calculated within frequency
range of 2kHz to 4kHz and average amplitude is calculated
as sample mean over all the frequency components.

• Variance based approach: Honks are characterized by multi-
ple peaks within the frequency range of 2kHz to 4kHz (honk
frequency range). Since there are multiple peaks, variance of
the squared magnitude values of the frequency spectrum is
high. Hence the variance of the amplitudes of squared mag-
nitude frequency spectrum, within the honk frequency range
is compared with a threshold to detect the honk frames.

479



0 20 40 60 80 100
0

20

40

60

80

100
ROC Curves

FP in %

TP
 in

 %

 

 

Variance Approach

PeakvsAvg Approach

Fig. 2. ROC curves for Variance and PeakvsAvg approach

3.1.1. Comparison of the Honk Detection Algorithms

The above two honk detection algorithms are tested on the DL-Train
data with approximately 90mins of traffic data. 90mins dataset
contains approximately 30mins data from each traffic state. Ground
truth is manually labeled using the Audacity tool[11]. The dataset
along with the ground truth labels can be found at [2]. Fig. 2 shows
the ROC curve for both approaches. It can be seen that Variance
approach outperforms PeakvsAvg approach. Along with detecting
the honks, the above two algorithms are also tested for their ability
to discriminate between the traffic states. In the following sections
we evaluate both the algorithms for classification results.

3.2. Choosing the pdf to model traffic states

Suitable pdfs are chosen depending upon the distribution of the honk
statistics for the each class. In case of free traffic class, it was ob-
served that honk statistics were more concentrated near the origin
and exponentially decreased as moved further. Hence exponential
density function was chosen to model the free class. Histogram
of the honk statistics for medium class showed an increase in the
histogram count as the percentage of honks increased and then it
decreased gradually. Hence Gaussian density was used to model
medium class. According to heuristics, the likelihood of the jam
class should increase as the number of honks is increased. However,
Gaussian density is used to model jam class, as training data showed
Gaussian distribution.

3.3. Choice of accumulation time interval (Tacc) and classifica-
tion results

Accuracy of the honk statistics classifier largely depends on the time
interval over which the honk statistics are calculated. A very small
time interval (< 10secs) would not provide enough evidence to dif-
ferentiate between the three classes. A large time interval could also
give errors since the traffic state could change within the specified
time interval. Hence an appropriate time interval need to be cho-
sen which has enough discriminative evidence and also the traffic
state does not change within the specified time interval. However,
architecture of the overall system and cost of the audio data could
constrain the choice of time interval. Figs. 3(a), 3(b), 3(c) and 3(d)

Tacc Variance Approach PeakvsAvg Approach

Jam Med Free Overall Jam Med Free Overall

10 69.4 40.8 94.7 67.6 50.4 40.8 92.9 65.5

30 81.93 56.92 100 79.58 53.1 49.5 94.7 65.1

60 85.3 67.4 100 83.4 60 49.5 98.2 75.1

120 89.1 82.1 100 89.5 64.3 42.8 100 68.3

Table 1. Classification accuracy of honk based classifier using Vari-
ance based approach and PeakvsAvg approach
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Fig. 3. Honk Statistics (Percentage of honks) in different time inter-
vals for Variance based approach. It can be seen that discrimination
between the three classes increases as the time interval is increased
from 10sec to 120sec (Assumption: Traffic state does not change
within the defined time interval).

show the pdf of the honk statistics for time intervals of 10s, 30s, 60s
and 120s respectively. It can be seen that the discrimination between
the class densities increase as the time interval is increased from 10s
to 120s.

Table 1 shows the classification results for both approaches for
different accumulation time (Tacc). DL-Train is used for training and
testing is done with DL-Test and HD-Test data. It can be seen that
Variance approach out-performs PeakvsAvg approach. As expected
(from Fig. 3), accuracies improve as Tacc is increased.

4. FUSION CLASSIFIER

The goal of the fusion classifier is to constructively combine the in-
formation from the MFCC and honk based classifier. It is impor-
tant that poorly performing classifier do not skew the final decision.
Quite a few approaches have been proposed in the literature to imple-
ment the fusion strategy [12][13] [14]. In our case, fusion is done at
the decision level[15] by a simple weighted based fusion approach.
The probability of each class obtained from MFCC and honk clas-
sifiers are weighted with the confidence measure of the each classi-
fier. The probability of the feature vector X , belonging to an event
ei ∈ Jam,Medium,Free is given by,

P (X = ei) = P (X|CM
ei
)γei + (1− γei)P (X|CH

ei
) (1)

where P (X|CM
ei
) and P (X|CH

ei
) represent the probability of X

belonging to event ei obtained from MFCC and honk classifiers re-
spectively. γei and 1 − γei are the relative confidence measures of
the MFCC and honk based classifiers for event ei. The probabilities
are obtained using the model likelihoods by,

P (X|CM
ei
) =

L(X = ei|λ
M
ei
)

∑

i

L(X = ei|λM
ei
)

(2)

where L(X = ei|λ
M
ei
) is the likelihood of the event ei w.r.t to

MFCC model λei for event ei. Same formula is used for the honk
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Tseg MFCC Honk (Tacc = Tseg) Fusion
(s) Jam Med Free Overall Jam Med Free Overall Jam Med Free Overall

10 75.19 86.25 97.64 86.36 69.43 40.80 94.73 67.63 87.62 83.22 97.64 89.49

20 81.89 93.70 98.82 91.47 78.19 56.40 97.64 77.41 89.03 91.89 98.82 93.25

30 86.19 96.20 100 94.13 81.83 56.92 100 79.58 94.62 96.20 100 96.94

Table 2. Recognition accuracies(%) for the traffic classes for MFCC, Honk and Fusion classifiers

Tacc MFCC (Overall) Fusion with Prior information(Tseg = 10s)

(s) Tseg = 10s Jam Med Free Overall

10 86.36 87.62 83.22 97.64 89.49

30 86.36 87.22 87.82 98.23 91.09

60 86.36 91.66 88.46 98.23 92.78

120 86.36 93.88 88.46 98.82 93.72

Table 3. Recognition accuracy(%) for fusion approach using prior
honk statistics

based classifier as well. There are few confidence measures pro-
posed in [15] [13]. In our case, we found that weighting with the
recognition accuracy of respective classifier obtained from the train-
ing data gave best results. Thus γei is obtained as

γei =
RM (ei)

RM (ei) +RH(ei)
(3)

where RM (ei) and RH(ei) are the recognition accuracies for event
ei obtained on the training data (DL-Train) for MFCC and honk clas-
sifier respectively.

4.1. Modified Fusion strategy

Table 1 shows that honk classier has very low classification accuracy
when small amount of audio data (10s) is available. However the
MFCC classifier was seen to perform well even with 10s of audio
data. Hence fusion classifier decision could be skewed by the low
performing honk classifier. Figs. 3(a) and (b) show a lot of overlap
between the class densities at low percentage of honks (< 40% of
honks). However, if the percentage of honks is greater than 40% then
overlap is significantly less. Thus honk classifier decision is reliable
if percentage of the honks is > 40%. A simple modification is done
on fusion approach when less than 30s of audio data is available.
The modification is as follows:

• If percentage of honks < 40%, use only MFCC classifier.
• If percentage of honk >= 40%, use Fusion classifier as de-

fined by the Eqn. 1.

5. EXPERIMENTAL SETUP AND RESULTS

MFCC classifier is implemented as explained in [4]. 39 dimensional
cepstral features were used as mentioned in section 1. The win-
dow size and shift size were chosen to be 100msec and 50msec

respectively. A larger window size would provide better results [4],
however require a large computation time (FFT calculation time in-
creases) resulting in a larger latency. Three GMMs with 11 mixtures
were built (one for each class) with 30 mins of data for each model.
Honk classifier and fusion strategy is as explained in section 3 and
section 4 respectively.

During the testing process, decision is made at every fixed time
segment (Tseg). Results are presented for 3 time segments of 10s,
20s and 30s. Likelihoods are calculated for each frame (100ms)
and average of the likelihoods is calculated over the defined Tseg ,

for each class. Maximum average likelihood criteria is chosen to
make the decision. Here honk accumulation time Tacc = Tseg . The
recognition results are shown in the Table 2. DL-Train data was
used for training. Test set included DL-Test and HD-Test data-set
as mentioned in section 2. Classification accuracies are shown for
MFCC, honk based and fusion classifier. MFCC based classifier al-
ways performs better than honk classifier. It can be seen that the
fusion approach outperforms the MFCC and honk based classifier
consistently at all time segments.
5.0.1. Fusion with prior honk statistics
The honk classifier accuracy increases as accumulation time Tacc is
increased as seen from the Table 1. Hence previous time segment
honk statistics can be used by the honk classifier to make more ac-
curate decisions. MFCC classifier uses only current 10s of acoustic
data to make the decision, hence MFCC classifier is the represen-
tative of the current acoustic data that was sent by the transmitter.
As a result, the classification accuracy of the MFCC classifier will
be same as reported in the Table 2. Honk based classifier will use
the honk information stored from previous time segment, along with
the current segment data. This prior information improves the honk
classifier accuracy and thereby the fusion results are also improved
as shown in Table 3. Decision is done at every 10s i.e., Tseg = 10s,
while the honk classifier uses prior information corresponding to dif-
ferent Tacc as shown in Table 3.

5.1. Future Work - Sensitivity of classifier to mismatched data
conditions

Both MFCC and honk classifiers are seen to be sensitive to mismatch
in data conditions resulting in degradation of the results. Some of the
notable sources of mis-match are a) Width of the road b) Type of ve-
hicles c) Pedestrian interference d) Type of recording device. Hence
models trained on particular type of road segment cannot be used on
road segment having different characteristics as mentioned above.
This was also reported in [5] where location specific models were
used. In future work we look to address this problem by adapting
the models with the location specific data.

6. CONCLUSIONS

An approach to traffic density state classification is proposed, using
road side collected acoustic data. The proposed approach and ar-
chitecture is well suited in developing regions having chaotic traffic
conditions. Motivation and algorithm is in accordance with real-
time deployment with data being collected either from fixed road-
side placed sensor or from participatory sensing. Along with mod-
eling cumulative signal using MFCC features, we also exploit honk
events to improve the classification accuracy. Honk based classifier
is studied and Variance approach used for honk detection is seen to
perform well. It is also seen that honk statistics became more dis-
criminative as accumulation time (Tacc) is increased. Hence honk
statistics were stored and used as prior information for processing
next time segment, which significantly improved the classification
results.
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