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ABSTRACT

With this work, we address the problem of acoustic gait-based per-
son identification, which is the task of identifying humans by the
sounds they make while walking. We examine several acoustic fea-
tures from speech processing tasks for their suitability for acoustic
gait recognition. Using a wrapper-based feature selection technique,
we reduce the feature set while at the same time increasing the iden-
tification accuracy by 10 % (relative). For classification, Support
Vector Machines (SVMs) are employed. Experiments are conducted
using the TUM GAID database, which is a large gait recognition
database containing 3 050 recordings of 305 subjects in three varia-
tions.

Index Terms— Acoustic gait-based person identification, gait
recognition, feature selection

1. INTRODUCTION

Recognizing people by the way they walk (also known as gait recog-
nition) has been an active field of research in the last decade. While
most of previous studies focussed on visual information, acoustic
information can also be used for gait recognition. Even though the
focus on this modality has so far been significantly less, results are
promising. The characteristics of the sounds of walking persons
are mainly dependent on the gait, shoes (and other characteristics
like trousers) and the floor type. In a user study [1], it was shown
that humans are able to distinguish other people by their walking
sounds. After a training phase, twelve subjects were able to iden-
tify their co-workers by their walking sounds with an accuracy of
66 %. This study shows that walking sounds convey characteristic
information about the walking person and can be used for person
identification. Using audio information for gait-based person iden-
tification has potential applications in indoor surveillance-scenarios,
to enhance visual surveillance and facilitate multimodal approaches.
As compared to video-based person identification, acoustic systems
will also work in the darkness, require less expensive hardware and
are less obtrusive. Acoustic gait-based person identification is also
known as acoustic gait recognition.

Until now, only few works have been addressing the problem of
acoustic gait-based person identification. In [2], the task was to de-
tect footstep sounds in a corpus of various different environmental
sounds. A system for person identification using footstep detection
was introduced in [3]. Mel-cepstrum analysis, walking intervals and
the degree of similarity of spectrum envelope are used as features.
For classification, a method based on k-means clustering is used.
The system was tested with a database of five persons. This work
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was extended in [4] by adding psychoacoustic features like loud-
ness, sharpness, fluctuation strength and roughness. Finally, in [5],
Dynamic Time Warping (DTW) was used for classification and the
database was extended to contain ten persons.

In [6], a system for person identification based on walking
sounds is presented. From the audio signal, the gait frequency,
spectral envelope, Linear Predictive Coding (LPC) coefficients,
Mel-frequency Cepstral Coefficients (MFCCs) and loudness are
computed. A subset of the features is selected using Fisher’s lin-
ear discriminant analysis. For classification, k-nearest neighbours
(k-NN) is compared with k-means. Using a database with 15 in-
dividuals with six different shoe types, classification rates range
from 33.5 % to 97.5 %. The weakness of all previous studies about
acoustic gait-based person identification that are mentioned here is
the fact that only small databases (mostly no more than ten subjects)
have been employed.

In this contribution, we describe experiments for acoustic gait-
based person identification using the TUM GAID corpus, which
contains a large number of subjects. Furthermore, the database
features recordings with three different variations (normal walking,
walking with a backpack and walking with shoe covers), which al-
lows for realistic experiments. We employ a large candidate feature
set adopted from speech processing and systematically select fea-
tures that are relevant for acoustic gait-based person identification.
Support Vector Machines (SVMs) are used for classification, and
features are ranked and selected using a wrapper approach. On an
independent test set, we achieve a 10 % relative improvement in
identification accuracy with the selected features compared to using
all features.

2. THE TUM GAID DATABASE

For our experiments, we use our freely available1 TUM Gait from
Audio, Image and Depth (GAID) database [7]. The motivation be-
hind the TUM GAID database is to foster multimodal gait recogni-
tion. Therefore, data was recorded with an RGB-D sensor, as well
as with a four-channel microphone array. Thus, a typical color video
stream, a depth stream and an audio stream are simultaneously avail-
able. The database contains recordings of 305 subjects walking per-
pendicular to the recording device in a 3.5 m wide hallway corri-
dor with a solid floor. In each recorded sequence, the subject walks
for roughly 4 m, typically performing between 1.5 and 2.5 gait cy-
cles. The sequences each have a length of approximately 2 – 3 s.
Three variations are recorded for each subject: Normal walking (N),
walking with a backpack (B), and walking with shoe covers (S). The
backpack constitutes a significant variation in gait pattern and sound
(sounds are created by the backpack itself), and the shoe covers pose
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Development Test
(150 subj.) (155 subj.)

N1 – N4 Enrollment Enrollment
N5 – N6 Identification Identification
B1 – B2 Identification Identification
S1 – S2 Identification Identification

Table 1: Setup of the TUM GAID database

a considerable change in acoustic condition. For each subject, there
are six recordings of the N setup, and two each of the B and S se-
tups. This sums to a total number of 3 050 recordings. The metadata
distribution of the database is well-balanced with a female propor-
tion of 39 % and ages from 18 to 55 years (average 24.8 years and
standard deviation 6.3 years). More than half of the subjects are
wearing sneakers while other commonly-used shoe types are boots
and loafers.

To allow for a proper scientific evaluation and to prevent over-
fitting on the test data, the database is divided into a development
set and a test set. The two sets are person-disjunct and contain 150
and 155 subjects, respectively. Both for the development and for the
test set, the first four N recordings of each subject are used for the
enrollment process. The other two N recordings as well as the B
and S recordings are used to perform the identification experiments.
This means that models are learned only using the N recordings,
while the B and S setups constitute previously unseen variations dur-
ing the identification experiments and will therefore deteriorate the
identification performance. The partition of the database is shown in
Table 1.

Figure 1 shows the spectrograms of four exemplary recordings
in the used database. The spectrograms reveal a lot of static back-
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(a) Normal recording
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(b) Backpack recording
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(c) Shoe cover recording
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(d) Normal recording of another
subj.

Fig. 1: Spectrograms of four recordings in the TUM GAID database.

ground noise, which is due to the recording environment. Figure
1 a shows a normal recording of one subject, where each walking
step is characterized by two successive sounds, where the first sound
has stronger low-frequency components and the second sound has
stronger high-frequency components. With a backpack (Figure
1 b), the steps get softer and audible sounds are added by the back-

pack. When wearing shoe covers (Figure 1 c), more and longer
high-frequency components are introduced, which are the rustle-like
sounds of the shoe covers. For reference, Figure 1 d shows the spec-
trogram of another subject, with sounds between the steps, which
result from the legs of the trousers rubbing against each other.

3. BASELINE SYSTEM

To address the problem of person identification based on gait sounds,
we use SVMs for classification and examine a number of acoustic
features. We use features which are established in audio processing
tasks like speech recognition, emotion recognition or acoustic event
classification. Our candidate feature set also includes features which
have been used in previous studies on acoustic gait-based person
identification.

3.1. Candidate Features

The database provides audio signals with four audio channels
recorded with a sampling rate of 16 kHz. Before the feature ex-
traction step, the recordings are converted to mono by averaging
over the four individual channels. In order to provide a first well
reproducible and transparent baseline system, we use a brute-force
large-scale feature extraction approach, employing our open-source
toolkit openSMILE [8].

The employed audio feature set is based on the baseline audio
features we had provided for the Audio/Visual Emotion Challenge
2011 (AVEC 2011) [9] and contains a number of energy, spectral
and cepstral features. Compared to the AVEC 2011 feature set, the
voicing related features were omitted, as we found out that they are
not relevant for our problem. The employed features are of supra-
segmental nature. This means that the acoustic descriptors such as
energy and spectral entropy (which are sampled at a fixed rate) are
summarized over a recording (of variable length) into a single fea-
ture vector of constant length. This is achieved by applying statisti-
cal functionals to the acoustic low-level descriptors (LLD). Thereby,
each functional maps each LLD signal into a single value for the
given segment. Examples for functionals are mean, standard devia-
tion, higher order statistical moments, quartiles, etc.

The set of LLDs and the functionals are listed in Table 2 and
Table 3, respectively. All LLDs are computed every 10 ms, where a
window size of 60 ms is applied for the MFCCs and loudness fea-
tures while all other features are computed based on windows with
a length of 25 ms. Features which have been analyzed in previous
studies about acoustic gait-based person identification [4, 5] such as
the loudness, psychoacoustic sharpness or Mel-Frequency Cepstral
Coefficients (MFCCs) are included in our feature set. In addition,
our feature set provides a substantial number of further acoustic fea-
ture information. Furthermore, for each LLD, first order delta co-
efficients (equivalent to the first derivative) are computed. The final
feature set is then made up of 25 LLDs× 42 functionals and 25 delta
coefficients × 23 functionals, summing up to 1 625 features in total
per recording.

3.2. Classification

To foster reproducibility, as a classifier, SVMs with a linear Ker-
nel function (as implemented in the WEKA toolkit [10]) are applied.
Sequential minimal optimization (SMO) (complexity 1.0) is used for
training. The multi-class classification problem is handled by con-
structing pairwise SVMs. SVMs are discriminative classifiers which
do not require large amounts of training data. This makes them es-
pecially suited for our task.
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Energy-related features (3)

loudness (auditory model based),
energy in bands from 250 Hz – 650 Hz, 1 kHz – 4 kHz,

Spectral features (12)

zero crossing rate,
25 %, 50 %, 75 %, and 90 % spectral roll-off points,
spectral flux, entropy, variance, skewness, kurtosis,
psychoacoustic sharpness, harmonicity,

Cepstral featurea (10)

MFCCs 1 – 10

Table 2: 25 energy and spectral-related acoustic low-level descrip-
tors (LLDs).

Statistical functionals (23)

(positive2) arithmetic mean, root quadratic mean,
standard deviation, flatness, skewness, kurtosis,
quartiles, inter-quartile ranges,
1 %, 99 % percentile, percentile range 1 %-99 %,
percentage of frames contour is above: minimum + 25 %, 50 %,
and 90 % of the range, percentage of frames contour is rising,
maximum, mean, minimum segment length,
standard deviation of segment length

Regression functionals1 (4)

linear regression slope, and corresponding approximation error (linear),
quadratic regression coefficient a, and approximation error (linear)

Local minima/maxima related functionals1 (9)

mean and standard deviation of rising and
falling slopes (minimum to maximum),
mean and standard deviation of inter maxima distances,
amplitude mean of maxima, amplitude mean of minima,
amplitude range of maxima

Other1 (6)

Linear Predictive Coding gain/coefficients 1 – 5

Table 3: Set of all 42 functionals used for audio feature extraction.
1Not applied to delta coefficient contours. 2For delta coefficients, the mean
of only positive values is applied, otherwise the arithmetic mean is applied.

3.3. Baseline Results

Results for the candidate feature groups and their combinations (us-
ing the development set) are shown in Table 4. Generally, the best
results are obtained in the normal (N) setup. Carrying a backpack
(B setup) leads to a different walking pattern as well as to additional
sounds and therefore to a decrease in identification performance. Us-
ing shoe covers (S setup) completely changes the characteristics of
the footstep sounds. However, all results in the S setup are still better
than the chance level (0.7 % accuracy).

The best single feature group, consisting of the MFCCs leads to
an average accuracy of 23.1 %. Energy features (which constitute
the smallest feature group with only three features) lead to the worst
performance. Looking at the different combinations of the feature
groups, it can be concluded that MFCCs and spectral features are
somewhat redundant, since there is no significant improvement when
combining those two feature groups (significance was evaluated us-
ing a one-sided z-test). The best result is obtained by combining
MFCCs with energy features, with an averagy accuracy of 28.1 %.
This result is significantly better than with only MFCCs (significant

Features N B S avg.

MFCC 41.7 22.3 5.3 23.1
Energy 29.3 17.0 5.0 17.1
Spectral 41.0 20.7 4.0 21.9
MFCC + Energy 49.7 28.7 6.0 28.1
MFCC + Spectral 44.0 26.3 4.7 25.0
Energy + Spectral 43.0 24.7 4.3 24.0
MFCC + Energy + Spectral 48.3 29.0 4.3 27.2
Best 400 features 57.7 30.7 3.3 30.6
Best LLDs 43.7 29.7 4.3 25.9

Table 4: Results on the development set (150 subjects), using dif-
ferent combinations of feature groups, the best 400 features as de-
termined by the described feature selection technique and the best
acoustic low-level descriptors (the three energy features, spectral
kurtosis, flux and skewness and MFCC 1). Shown is the identifica-
tion accuracy for the three setups N (normal walking), B (backpack)
and S (shoe covers) and the average. The chance level is 0.7 %.

at a 0.01 level) and even better than the combination of all three fea-
ture groups.

4. FEATURE ANALYSIS

In order to reduce our feature set and to identify the relevant fea-
tures, we apply an automatic wrapper-based [11] feature selection
technique.

4.1. Feature Selection

We use a simplified version of Sequential Forward Selection [12]
for feature analysis. For each of the N = 1625 candidate features
(including all the delta coefficients and functionals) the classifier is
trained and evaluated on the N setup of the development set. For
the whole feature set F = f1, f2, ..., fN , this accuracy a(fn) is
computed as

a(fn) =
1

T

T∑
t=1

δ
(
argmax

c
P (xt|m(c, fn))− l(t)

)
(1)

where X = x1, x2, ..., xT are the instances of the development set,
l(t) denotes the true label for instance t, δ(·) is the Kronecker delta
function and m(c, fn) is the model of the classifier for class c, built
using only feature fn. In this experiment, accuracies a(fn) between
0 % and 7 % are achieved, with a mean of 1.8 %. The features are
then sorted according to their classification accuracy a(fn). Then,
starting with the single best feature, more and more features are
added to the feature set according to their ranking until the whole
feature set is used. Figure 2 shows the results of this experiment on
the development set. The best result is obtained using 400 out of the
total 1 625 features. This result is also shown in Table 4. Out of these
400 features, 89 are derived from MFCCs, 90 from energy features
and 221 from spectral features. This composition suggests that in all
of the three feature groups, there are relevant features. While with
all 1 625 features, an accuracy of 48.3 % is achieved in the N setup,
with the 400 best features, this accuracy is raised by 19 % relative
to 57.7 %. This improvement is significant at the 0.05 level. For
the B setup, there is a non-significant improvement to 30.7 %, while
the performance in the S setup undergoes a slight (non-significant)
decrease to 3.3 %, compared to using all features.

We then further analyzed the employed low-level features and
functionals. In order to understand the relevance of each feature, we
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Fig. 2: Identification accuracy on the N (normal) setup of the de-
velopment set for different numbers of features. More features are
added according to their identification accuracy as a single feature.

obtained a single score for each low-level descriptor and for each of
the functionals. For each low-level descriptor, we compute the aver-
age of a(fn) over the top 50 % performing functionals. Analogously,
for each of the functionals, the average accuracy over the top low-
level descriptors for this functional is computed. The features which
get the highest scores are the three energy features, spectral kurtosis,
flux and skewness and the first MFCC coefficient. These are also the
features which are among the most common features in the feature
set of the best 400 features as determined by the simplified sequen-
tial forward selection technique. When only these LLDs are used
(together with all delta coefficients and functionals, summing up to
455 features in total), an average accuracy of 25.9 % is obtained with
the development set (see Table 4). Since these features have been
ranked and selected independent of each other, it is understandable
that the result is slightly worse than the baseline result of 27.2 %
when using all features. Among the functionals, the best scores are
achieved by the means (arithmetic and root quadratic), the standard
deviation, the quartiles and quartile ranges and the percentiles and
percentile ranges. Similarly as with the best scored features, these
functionals are also among the most common functionals in the best
400 features.

4.2. Test Set Results

Table 5 shows results for experiments using the test set containing
155 subjects. In general, the same trends can be observed as on the
development set. The combination of MFCCs and energy features
is better than the combination of all three feature groups. Using
the best 400 features which have been selected as described in Sec-
tion 4.1, the best result is achieved with an average identification
accuracy of 28.2 %. This is a 10 % relative improvement compared
to using the whole feature set.

5. CONCLUSIONS

In this paper, we presented an extensive feature analysis for acoustic
gait-based person identification. Using the development set of the
TUM GAID database, suitable features have been analyzed and se-
lected from a large candidate feature set. Out of all 1 625 features,
a subset of 400 features was selected with a wrapper-based feature
selection technique, which led to the best average results on the test
set. This feature set contains features from all three feature groups
(energy, spectral and cepstral). When features are examined inde-
pendent of each other, the three energy features, spectral kurtosis,

Features N B S avg.

MFCC 42.3 21.9 7.4 23.9
Energy 24.2 17.7 3.6 15.2
Spectral 33.2 10.0 1.9 15.1
MFCC + Energy 46.5 25.5 7.4 26.5
MFCC + Spectral 43.6 24.8 3.6 24.0
Energy + Spectral 37.1 22.9 3.2 21.1
MFCC + Energy + Spectral 44.5 27.4 4.8 25.6
Best 400 features 51.9 28.4 4.2 28.2
Best LLDs 38.1 21.6 4.5 21.4

Table 5: Results on the test set (155 subjects), using different com-
binations of feature groups, the best 400 features as determined by
the described feature selection technique and the best acoustic low-
level descriptors (the three energy features, spectral kurtosis, flux
and skewness and MFCC 1). Shown is the identification accuracy
for the three setups N (normal walking), B (backpack) and S (shoe
covers) and the average. The chance level is 0.7 %.

flux and skewness and the first MFCC coefficient are found to be
relevant for acoustic gait-based person identification. The best re-
sults were achieved on the normal recordings (N experiments), while
wearing a backpack (B) or shoe covers (S) influenced the achieved
identification accuracy in a negative way.

Future work includes investigation of features which are specif-
ically taylored to gait sounds. Furthermore, fusion of our acoustic
approach with vision-based approaches (as in [13], where speaker
recognition was combined with face recognition) should lead to im-
proved performance. In [14], it is investigated how new classes can
be added to the set of already known classes of acoustic events.
Given the fact that relatively small amounts of training data are avail-
able in acoustic gait recognition tasks, such adaptation techniques
could lead to improved performance. Additionally, adopting adap-
tation approaches from the speaker recognition domain [15] could
also address this problem. To increase the robustness of the systems,
we plan to apply signal separation techniques and noise-robust rec-
ognizers as in [16].

6. RELATION TO PRIOR WORK

The most-widespread approach for video-based gait recognition is
the Gait Energy Image [17], which is a simple silhouette-based ap-
proach. It can be combined with face recognition [18] or with depth
information [19]. Furthermore, model-based approaches have been
proposed for visual gait recognition [20]. Besides using video or au-
dio information, other methods to identify walking persons include
using acoustic Doppler sonar [21] or pressure sensors [22].

Compared to previous works on acoustic gait recognition [3, 4,
5, 6], we investigated a larger number of features and used a much
larger database. In these studies, the employed audio features in-
clude gait frequency, spectral envelope, LPC coefficients, MFCCs
or loudness. In [23], inter-peak distances and peak height were used
as audio features.

In [24], acoustic features from the speech domain are used for
the classification of acoustic events, which is similar to our work,
since they try to adopt features which were developed for speech
processing for another audio recognition task. Another study about
feature selection for acoustic event detection is [25], where the dis-
criminant capability of each feature (candidate features are MFCCs
and log frequency filter bank parameters) is quantified according to
the approximated Bayesian accuracy.
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