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ABSTRACT

We introduce the discipline of Acoustic Geo-Sensing (AGS) that deals
with the connection of acoustics and geoposition, i. e., ‘local audio’ –
focussing on spatial rather than on temporal aspects. We motivate this
field of research, and give an example by automatic determination of
a cyclist’s route between determined start and endpoints, the direction
she advances on this route, and the progress made from cell-phone
audio. The Graz Cell-phone Cycle Corpus of 16 hours audio is
introduced to this end. A standardised acoustic feature set ensures
reproducibility throughout extensive experimentation aiming to reveal
maximal spatiotemporal resolution. In the result, principle feasibility
is shown by unsupervised clustering and all presented tasks can
be solved at high accuracies and correlation within Random Forest
classification and Additive Regression.

Index Terms— Acoustic Geo-Sensing, Ambient Audio, Intelli-
gent Audio Analysis, Computer Audition

1. INTRODUCTION

“When hearing a sound, our imagination often plays an important part
in recognising what it might be” [1]. However, common experience
has it that, one is also able to think where it might be. In this light,
we want to introduce the field of Acoustic Geo-Sensing, motivate
its potential, and describe the exemplary demonstration of general
feasibility of three selected tasks.

1.1. Defining Acoustic Geo-Sensing

Geosensors are such devices that measure or receive environmental
stimuli that can be geographically referenced. Acoustic Geo-Sensing,
or AGS for short, is consequently related to analysing acoustic stimuli
alongside their geographical reference. As such, emphasis is put on
the location in the spatiotemporal continuum, i. e., we are mostly
interested in finding acoustic relation to the fixed geolocation utmost
independent of the time. Obviously, time has a significant influence
if one thinks of outdoor recordings which are acoustically influenced

The authors acknowledge funding from the Advanced Audio Process-
ing project by the Austrian Research Promotion Agency and the European
Community’s Seventh Framework Programme (FP7/2007 – 2013) under grant
agreement No. 288587 (MASELTOV). The responsibility lies with the authors.
The authors express their gratitude for permission to use map material from
Digitaler Atlas der Steiermark, Abteilung 7 – Landes und Gemeindeentwick-
lung, Referat Statistik und Geoinformation, GIS-Steiermark, Austria.

by weather conditions or time of day and working day vs. holiday
in urban environments. However, interesting applications can also
include the recognition of spatiotemporal equivalence of multiple
sensors, for example to determine whether two persons’ phone calls
originate from the same geoposition at the same time.

1.2. Application Potential

A number of applications opens up including commercially inter-
esting ones and such that posses the potential to have an impact on
society. To name a few, let us begin with applications where the
geoinformation is known alongside the acoustic recording. These
include acoustic monitoring for public safety, e. g., by crowdsourcing
from persons willing to contribute to such a service and transmitting
audio data from their cell-phones or capture devices mounted on cars,
etc., e. g., to pre-filter locations of potential accidents [2], aggressive
behaviour, etc. Next ‘acoustic maps’ can be thought of similar to
connecting vision with geolocation [3], either by collecting sounds
from different geolocations and allowing for acoustic playback, e. g.,
by ‘mouseover’ events. This may require acoustic thumbnailing or
summarisation to identify or collect the most characteristic audio fin-
gerprint(s) over time for a certain period. An interesting variant then
will be acoustic pleasantness maps [4] that measure the agreeableness
of the acoustic environment in a certain location. An automatically
generated ‘acoustic diary’ of a journey could be another option: Such
a diary could either find acoustic thumbnails along the route or find
the most prominent ones and show them on a map.

If the location needs to be inferred from the audio, e. g., from
phone calls, a further range of applications opens up. Advertisement
placement suiting the environmental condition by ‘any sensor’ of
a remote device (thus including audio capture) has recently been
patented [5]. In forensics, identification and verification of location
by audio can be of interest: Imagine a phone call recording without
knowledge of the geoposition, e. g., by tracking. Then, either a
location identification or verification can be based on the acoustic
recording. Further, emergency hotlines can infer the position of
callers in case they are not able to give coordinates by themselves,
for example, because they dial the number secretly while being kept
hostage or similar. Such hotlines could also prioritise new callers from
new positions in case of mass catastrophes: Given an incident that
involves several hundred or thousands of people, emergency hotlines
will likely receive hundreds of calls providing similar information
giving little to no chance to callers in need outside of this event. Given
a system that identifies geographic similarity, it could prefer calls
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Fig. 1. From left to right: four-channel high quality audio recorder
with wind shield and helmet mounting in 90◦ angle of inclination,
smart phone with windshield and positioning in the backpack. The
additional GPS tracker was positioned inside the backpack ensuring
sufficient satellite visibility.

from new destinations to switch to human operators first.

1.3. Example

In this work, we want to exemplify feasibility of three research ques-
tions in the field of Acoustic Geo-Sensing: Can it be inferred from
the audio recording (I) which route between two endpoints was taken
by a cyclist – the route recognition, (II) in which direction the cy-
clist proceeds along the route – the route direction recognition, and
(III) which progress was made along this route– the route progress
recognition. In fact, this is what we sometimes do ourselves, e. g.,
when talking to family members over the phone which are on their
way home or similar: In such a case, one can often estimate from the
ambient audio and acoustics where on their way they roughly are.

A particular concern will then be the spatiotemporal resolution,
i. e., which amount of time is needed for a sufficiently reliable con-
clusion and which local resolution results from it. Obviously, a limit
similar to Heisenberg’s uncertainty relation exists: At some point the
window in time for chunking will be too small to lead to a perfect
spatial determination, in particular given the variability of acoustics
over time.

1.4. Relation to prior work

There have been several recordings of environmental sounds for
Acoustic Event Detection or Classification [6] and Computational
Auditory Scene Analysis [7] or more general Computer Audition
purposes [8]. Recognition of sound events is increasingly pursued,
e. g., in [9] – also in the urban environment [10], yet, not related
to (exact) geographic location. This is similarly true for classifying
acoustic ambience. The field of Acoustic / Sound (Source) Local-
isation [11] infers local information from sound, however, usually
without relation to the audio content and again without relation to
a fixed geographical location. The field of Acoustic Remote Sens-
ing mostly deals with tomography [12]. As such, acoustic waves
are used for imaging by sections or sectioning. However, this name
was already set into relation with connecting acoustics and position,
e. g., for ecological area analysis by acoustics of wildlife [13]. Most
closely to the introduced Acoustic Geo-Sensing may be works within
the MediaEval evaluation campaign’s placing task for location deter-
mination in Flickr videos – contributions focussing on audio were
made in this context, e. g., for the recognition of the city of recording
out of 18 [14]. We are not aware of any prior work on acoustic route
monitoring – let alone in the specific case of cycling.

The remainder of this paper is structured as follows: In Section 2
we introduce the Graz Cell-phone Cycle Corpus recorded for experi-
mentation, in Section 3 we report experimental results for the above
named tasks, before concluding in Section 4. There, a number of
concrete steps for future development are given.
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Fig. 2. Two alternative routes (left/blue: RIVER route, right/red: CITY
route) recorded in the Graz area/Austria from Bucherlweg/Grambach
to Steyrergasse/Graz. The starting point is found at the bottom – note
that, for better visibility only the red colour is used from both routes’
start until their branch. The endpoint is at the top with only the final
parking lot as overlap.

# # [m] T [min:sec]
Route fw bw L min mean sdev max
CITY 6 3 8431.9 22:44 25:44 1:53 28:12
RIVER 17 7 9546.1 27:02 30:29 2:48 39:36

Table 1. Statistics of the 16 h GC3 route takes: number per forward
(fw) and backward (bw) direction, length (L), and duration (T).

2. THE GRAZ CELL-PHONE CYCLE CORPUS

2.1. Recording

As cycle, a 26” Scott Elite Racing mountain bike was used. To record
audio data during bicycle rides without particularly demanding hard-
ware conditions, an Android smart phone of the brand Samsung
Galaxy Nexus was used as main device. This device samples spatially
equidistant and was operated at 0.2 m−1. The phone was loosely
located in a side pocket of a backpack worn on the back of the cyclist.
As only additional measure, a wind shield from an ordinary micro-
phone was put on top of the device (cf. Figure 1). The standard media
recording APIs of Android use an AMR codec with poor quality.
Therefore, the audiostream was accessed directly and saved uncom-
pressed as PCM at 44 kHz, 16 bit. The recording component was
implemented as a service and thus could run in the background with
the phone locked and the screen turned off. For GPS measurements,
the phone utilises the SIRFStar IV GSD4t chipset, which enables
maintaining position locks also in challenging environments such as
urban canyons or dense forests. In addition to this, limited motion
sensing is available through an InvenSense MPU-3050 accelerometer
unit. This sensor contains a MEMS accelerometer and a gyroscope.
Linear and angular accelerations can be captured at a sampling rate
of up to 100 Hz. Since the audio recording thread already puts the
CPU under considerable load, the actual achievable sampling rate
was in the range of 10 – 20 Hz, though. The MARIA application [15]
for public transport guidance was adjusted in a way to log the audio
alongside GPS coordinates and acceleration data from the motion
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Fig. 3. Left to right: Routes from start at home to office – CITY route
(top) and RIVER route (bottom). Pictures above each other are taken
at same distance from start and evenly distributed along the pathes.
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Fig. 4. Qualitative unsupervised kMeans clustering of the 17 takes of
the RIVER route in forward direction: 10 (left) and 20 (right) clusters.
Y-axis: cluster number (each cluster is shown in one horizontal line –
a cluster’s presence is marked by ‘x’ symbols along this line. X-axis:
distance from start (left) to end (right). Grey shading is only used for
better visibility.

sensor. This allowed to foster synchrony between audio recording
and GPS and additional sensor data. However, depending on the
phone hardware, deviation may occurr – a maximum of 1 s was mea-
sured for a 42 min take. This deviation was considered as tolerable.
In addition, a Zoom H2 four-channel recording device recording
at 48 kHz, 16 bit was mounted to the helmet of the cyclist for high
quality audio (cf. Figure 1). Finally, a secondary GPS sensor was
used for verification purposes: The NAVIN Mini Homer GPS tracker
was operated at a sample rate of 0.2 Hz. The recordings were made
by the second author on his way to and from work at various times
throughout the day. No weekend or night takes are contained, which
renders the current analyses optimistic as this may impact traffic load,
however, without too strong limitation of application range. Two
different routes were chosen on purpose, see Figure 2. Both routes
are common alternatives for the recording cyclist on his way from/to
work and were followed strictly throughout repeated takes. As can
be seen in the figure, one route is characterised by going alongside
the Mur river for roughly half of the route. The river is, however,
hardly audible in the recordings. Pictures along the route are visible
in Figure 3 for illustration. Table 1 shows statistics of the routes.

2.2. Annotation, Partitioning, and Release

In principle, the audio is annotated by the GPS track without further
labelling effort. However, a range of additional information was
noted alongside. The following protocol was established for metadata
transcription: date and time of start, type of movement (cycling, walk-
ing, stationary), from/to (addresses), position of recorders, weather
condition (cloudy / clear / partly cloudy / heavy cloud, dry / drizzle /
rain / heavy rain / thunderstorm, temperature in ◦C). Further, the GPS
coordinate tuples were transformed to distance values by cumulative
Euclidean distance between two GPS sample points. This allows
for spatially equidistant chunking of the audio by non-overlapping
windows. Alternatively, temporally equidistant chunking will be con-

LLD (16 · 2) Functionals (12)
(∆) ZCR mean
(∆) RMS Energy standard deviation
(∆) F0 kurtosis, skewness
(∆) HNR extremes: value, rel. position, range
(∆) MFCC 1–12 linear regression: offset, slope, MSE

Table 2. Extracted audio features: low-level descriptors (LLDs) and
functionals. MSE: mean square error.

sidered for comparison. While one can expect spatial equidistance
to be more precise, an application may often not be able to chunk in
such a way, as it first does not have the spatial information available.

To ensure independent testing and development, the recorded
routes were divided into three partitions. Train and development data
are united after the optimisation phase for testing. This partitioning
was carried out once in chronological order taking the first third of
the CITY and RIVER routes, each, for training, the next third for
development, and the last for independent testing. The data can be
obtained freely per request. In the ongoing, we refer to the data set
by the Graz Cell-phone Cycle Corpus or GC3 for short reference.

3. EXPERIMENTS

In this work, all experiments are carried out on the cell-phone audio
takes to demonstrate feasibility even in low audio quality condition
without extra mounting effort. Further, we exploit only GPS informa-
tion for training and testing from the additional sensor data recordings
and no metadata for the moment. To foster reproducibility of findings,
we use the openSMILE feature extractor [16] with a standardised
feature set, and the Weka toolkit for classification [17]. We decided
for the set of the INTERSPEECH 2009 Challenge event [18]. This
set was preferred over other standards such as given by the MPEG
7 low-level descriptors (LLDs) [19], as also the implementation of
features is well defined and accessible by the open source openS-
MILE extractor [16]. 16 LLDs are contained. To each of these, the
delta coefficients are additionally computed. Next, 12 functionals
are applied on a chunk basis as depicted in Table 2. Thus, the total
feature vector per chunk contains 16 · 2 · 12 = 384 attributes.

Classification is performed by Random Forests. A number of 30
unpruned trees were found a good choice on development data across
tasks. In a similar fashion, Additive Regression with 50 iterations of
Simple Regression as regression learner was found well suited for
regression in the case of continuous route progress prediction. All
results are shown in Table 3 – in the following, details of the exper-
iments are given. The results are reported by means of unweighted
accuracy (UA: recall of all classes added and divided by number of
classes to respect imbalances) and ‘normal’ weighted accuracy (WA)
for classification, and by correlation coefficient (CC) for regression.
UA chance level in case of binary or ternary decision resembles 50 %
and 33 %, respectively. For training and testing the same chunk size
is used, each. Note that, by principle different chunk sizes thus lead
to different numbers of testing instances – results can thus not be
directly compared across different chunk sizes.

We first carried out a qualitative pre-study by looking at unsuper-
vised kMeans clustering over all takes of the RIVER route in forward
direction, as it possesses the highest number of takes (cf. Table 1). In
this study, spatially equidistant chunking is more meaningful, and we
chose a resolution of 50 m for visualisation in Figure 4 – we had fur-
ther investigated 100 m and 500 m with similar effects. In this figure,
one notices several acoustic clusters appear subsequently along the
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Route Direction Progress
Lchunk # test UA WA # test UA WA # test UA2 WA2 UA3 WA3 CC

equitemporal chunking [sec]
5 2 995 62.0 65.5 3 080 73.3 76.7 2 358 68.0 68.4 56.5 57.2 .440
10 1 501 65.6 68.1 1 543 76.1 78.8 1 181 68.0 68.2 60.1 60.5 .446
30 505 65.4 70.5 519 73.2 78.0 397 75.3 75.6 60.8 61.5 .568
60 255 78.4 78.4 261 76.3 78.5 200 67.8 68.5 69.2 60.9 .601

equispatial chunking [m]
50 1 488 67.0 72.5 1 533 76.9 79.1 1 151 67.8 67.8 55.9 55.9 .446
100 746 69.0 73.7 769 81.2 81.9 577 68.8 68.8 61.2 61.2 .369
500 153 72.3 76.5 159 77.9 81.8 119 84.0 84.0 68.9 68.7 .752

Table 3. Route and direction recognition in dependency of chunk length Lchunk in sec or m: unweighted (UA) and (weighted, WA) accuracy in
%, route progress estimation: either for binary (UA2/WA2) or ternary (UA3/WA3) quantisation or by correlation coefficient (CC) for continuous
modelling, and number of respective resulting test instances after chunking.

distance axis – this can be interpreted as strong indication that indeed,
even over repeated recordings, certain geographic areas tend to be
marked by specific types of acoustics.

For route recognition, we chose to use only ‘forward’ direction
instances (home to work), as more exist from these for both routes
and we wanted to keep the question of direction and route separate.
Training and development data are united for final testing. Due to
imbalance among the two classes, we use random downsampling
without replacement to 60 % and uniform class distribution for the
overall learning data. Table 3 shows results as high as 78.4 % UA
given one minute of audio.

For route direction recognition, we chose to use only RIVER
instances, as more exist from this route and – as stated above – we
wanted to keep the question of direction and route separate. Training
and development data are united for final testing. Due to imbal-
ance among the two classes, we use random downsampling without
replacement to 40 % and uniform class distribution for the overall
learning data. As can be seen in Table 3, the recognition reaches
78.8 % UA from as little as 10 sec of audio.

In the final question of route progress recognition, we analyse
the progress along the RIVER route in forward direction. This is a
consequent choice not only because most examples exist for this route,
but, by that we so far first looked at deciding if or not we are dealing
with the river route, then in which direction it is being progressed –
forward or backward – and now finally decide on the progress in the
forward case. We consider regression by comparison with the distance
in m. Upsampling of training material is not necessary in this case, as
the tracks always contain each distance from beginning to end. Here,
75.2 % UA can be reached for binary (beginning/end) decisions from
30 sec of ‘observation’ audio. For ternary (beginning/middle/end)
decisions, remarkable 69.2 % are obtained using a 1 min audio chunk
length. Finally, fully continuous regression determining the distance
in metres leads to a CC around .6 as of 30 sec of audio. Obviously,
equispatial chunking is in particular suited in this task, and .752 CC
are reached for 500 m chunking.

4. CONCLUSION

We introduced the field of Acoustic Geo-Sensing and exemplified it
by three tasks related to inferring geoposition by acoustic information.
Unsupervised chunking visually demonstrates that ‘similar acoustics’
tend to appear in local neighbourhood even over time. Then, we
showed the feasibility of route, route direction, and route progress
determination from audio with results highly significantly above

chance levels (p value < 10−3 for all results in Table 3 in one-sided
z-testing respecting varying number of test instances).

In future work, we aim to compare unsupervised clustering with
semantically meaningful tags such as ‘park’, ‘crossing’, etc. Next,
the data may be added by further cities and routes, and other forms of
transportation such as car riding or walking. Further, we will continue
our first additional recordings with a mobile electrodermal activity
and skin temperature sensor (Affectiva’s Q Sensor) [20] to correlate
indication of human arousal (or valence) with the current acoustic
scenery, such as ‘alongside river’ or ‘downtown city’. This can also
be set in relation to prediction of sound emotion analysis [21], such
as the arousal regression presented in [22, 23]. In a similar fashion,
higher level features that determine sound event types [24, 6] can
provide additional information over LLD-type feature information.
In particular, ‘bag of audio words’ [25] seems a promising approach
as data-trained feature type. These could be based on variable length
audio words, for example by using Bayesian Information Criterion
(BIC) or similar to detect audio ‘word boundaries’. Also, N-Grams of
audio words can be thought of. As for pre-processing, the audio could
be (blindly) separated into multiple sources, such as by non-negative
matrix factorisation (NMF) [26, 27]. In fact, semi-supervised or
supervised NMF-type activation features would allow for another
type of higher level audio features such as degree of presence of car
events or similar [28]. Further, modelling of temporal context seems
promising, such as by long short-term memory recurrent architectures
[29] – in particular when routes are analysed. These can be combined
in an elegant manner with bottleneck topologies for self-learning
feature space compression [30]. In addition, dynamic modelling
approaches such as by dynamic time warping in case of few references
or hidden Markov models (HMMs) shall be evaluated – potentially in
tandem operation. HMM forward and reverse path models could have
the same states, but in reversed orders. Next, variable chunk lengths
such as by BIC and ‘multi-condition’ style training with different
lengths can be thought of. In case of dropout of GPS, e. g., in the
event of tunnels or partial indoor activity, interpolation will need to
be considered – this was not required along the routes recorded in
our experiments. In fact, AGS may even be of help to keep track in
such a dropout event in navigation systems, and the combination of
audio and GPS data could be used to ensure plausibility (lately, cases
of GPS hijacking have been reported, e. g., of drones, by intentional
emission of erroneous GPS information). Also, obviously, further
multimodal combination such as audiovisual geo-sensing can be
thought of in combination with video information [31]. Finally, the
recorded movement sensor data would allow for research questions
such as inferring movement from the audio.

456



5. REFERENCES

[1] M.A. Forrester, “Auditory perception and sound as event: theo-
rising sound imagery in psychology,” Sound Journal, 2000, no
pagination.

[2] M. Fellner, F. Graf, H. Rainer, and B. Rettenbacher, “Intelligent
Acoustic Solutions in Road Traffic Telematics,” ÖGAI Journal,
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