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ABSTRACT 
 
In this paper, a novel procedure for the estimation of the energy 
decay curve of the reverberation on rectangular non-diffusive 
rooms is presented. It is based on the calculation of the expected 
sound intensity using a room characteristic factor, the specific 
attenuation factor, also introduced in the paper. Complete 
knowledge of the probability density function of this factor leads to 
exact estimation of the energy decay curve of reverberation, even 
in the case of heavily irregular rooms and/or un-homogeneous 
walls. 
 

Index Terms— Reverberation, Energy Decay Curve, Image 
Source Model 
 

1. INTRODUCTION 
 
Reverberation plays a central role in room acoustics. In the seminal 
work by Sabine [1], he proposed the reverberation decay time as a 
measure of the acoustic quality of a room, and empirically deduced 
a formula that is still used. Later work by Eyring [2] tried to 
provide a more theoretically founded analysis, but it was based on 
the assumption that the room was perfectly diffusive, what is only 
true under very strict conditions of geometry of the room and 
absorption of its walls, that are difficultly met. Other works, such 
as those from Fitzroy [3], Arau [4] or Neubauer [5], try to 
overcome the problems associated with standard rooms where the 
perfect diffusive assumption cannot be made, but still are focused 
on the estimation of the reverberation decay time. 

More recently, several authors have tried to characterize not 
only the decay time of reverberation, but its whole evolution along 
time as well. Most of these works are based on geometric 
considerations, either using wave propagation ideas [6], or the 
image source model [7]. 

In this work, we propose a novel estimation of the energy 
decay curve of reverberation for non diffusive rectangular rooms 
based on the image source model. Unlike previous works, it does 
not rely on geometric considerations, but on the probability density 
function (PDF) of a room dependent factor. A complete and exact 
knowledge of this PDF leads to error-free estimation of the energy 
decay both for low frequency and broad band signals. 

Our approach is similar to that of Lehmann and Johansson [7] 
but, while they rely on complex geometric considerations, our 
method is based on more tractable statistic properties of the room. 
 

2. THE IMAGE SOURCE MODEL IN NON-
DIFFUSIVE RECTANGULAR ROOMS 

 
The image source model is based on the fact that the effects of the 
reflection of sound on a non-diffusive limiting surface can be 
modeled by substituting this surface with a specular virtual source. 

By considering all possible reflections on the different walls of an 
enclosure, we get a constellation of virtual sources. The total 
reverberation can be thus estimated as the sum of all these 
individual contributions. 

In the case of rectangular rooms, the shape of the constellation 
of virtual sources is regular. It can be readily seen that the whole 
space is divided in non-overlapping cells of exactly the same shape 
of the room, each holding one single virtual source. This regularity 
in the partition of space enables us to estimate the density of 
sources with an arrival time to the listener equal to 𝑡 [8]: 

𝕞(𝑡) ≈ 4𝜋
𝑐3

𝑉 𝑡2 (1) 

Where the approximation becomes exact for times growing up to 
infinity. 
 

3. THE SPECIFIC ATTENUATION FACTOR 
 

3.1. The specific attenuation 
 
The intensity of sound at a certain point due to a single source of 
power W depends on three independent factors: the distance 
between them, and the attenuation due to air absorption and to the 
reflections on the walls of the room. Discarding the effects of air 
absorption, we can express the intensity as: 

𝐼(𝑡) = 𝑊 ·
1

4𝜋(𝑐𝑡)2 · �(1 − 𝛼𝑖)𝑛𝑖
𝑖

 (2) 

Where 𝑟 is the distance between the source and the point, 𝛼𝑖 is the 
absorption coefficient of wall 𝑖, and 𝑛𝑖 is the number of reflections 
on that wall. 

The third term of this equation only depends on the reflections 
suffered by the sound in its travel from the source to the listener. In 
rectangular rooms, we get six walls. We call 𝑆+𝑥𝑦 the wall placed 
on the 𝑥𝑦 plane in the positive direction of axis 𝑧 and, similarly, 
𝑆−𝑥𝑦 the one opposite to that. The number of reflections on each of 
these walls, that we call 𝑛+𝑥𝑦 and 𝑛−𝑥𝑦, respectively, will differ at 
most in one, so we will suppose that they are equal and call it 
𝑛𝑧 ≈ 𝑛+𝑥𝑦 ≈ 𝑛−𝑥𝑦. The attenuation due to reflections on this 
couple of walls becomes: 

Axy ≈ �1 − 𝛼+𝑥𝑦�
−𝑛+𝑥𝑦�1 − 𝛼−𝑥𝑦�

−𝑛−𝑥𝑦 = 𝛽𝑧−2𝑛𝑧 (3) 

Where 𝛽𝑧 = ��1 − 𝛼+𝑥𝑦��1 − 𝛼−𝑥𝑦� is the mean reflection 

coefficient for walls parallel to plane 𝑥𝑦, i.e. normal to 𝑧. The total 
attenuation due to reflections on the walls of the room becomes: 

Aref= � βi
-2ni

i=x,y,z

 (4) 

In the image source model this attenuation only depends on the 
location of the virtual source. In general, the longest the distance, 
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more reflections will be involved. Being 𝐿𝑖 the dimension of the 
room on the 𝑖th axis, we have: 

𝑡 =
1
𝑐
�(𝑛𝑥𝐿𝑥)2 + �𝑛𝑦𝐿𝑦�

2 + (𝑛𝑧𝐿𝑧)2 (5) 

And the attenuation due to reflections can be expressed as 

Aref= � βi

-2ct 𝑛𝑖

�(𝑛𝑥𝐿𝑥)2+�𝑛𝑦𝐿𝑦�
2+(𝑛𝑧𝐿𝑧)2

i=x,y,z

= S(𝑡,𝜃)𝑐𝑡 (6) 

S(𝑡,𝜃) = S(𝜃) = � βi

- −2𝑛𝑖

�(𝑛𝑥𝐿𝑥)2+�𝑛𝑦𝐿𝑦�
2+(𝑛𝑧𝐿𝑧)2

i=x,y,z

 (7) 

Where we call S(𝑡,𝜃) the specific attenuation of the room for a 
virtual source at a distance 𝑟 = 𝑐𝑡 in the 𝜃 arrival direction. This 
specific attenuation always depends on the arrival direction but 
notice that, in the case of rectangular rooms, it is independent of 
time because it does not depend on the particular values of 𝑛𝑖 but 
just on the ratios 𝑛𝑗 𝑛𝑖⁄ . 
 
3.2. The specific attenuation factor 
 
In non-diffusive rectangular rooms, the specific attenuation is 
bounded. The lower limit corresponds to the direction in space 
with the minimum attenuation. Let’s consider first tangential 
sources, i.e. those where just two confronted walls are involved. 
For this kind of source just one of 𝑛𝑖 is different from zero, so the 
logarithm of the specific attenuation in its direction is 
ln S(𝜃) =−2 lnβi 𝐿𝑖⁄ . Thus, the minimum occurs for direction: 

𝑖𝑚𝑖𝑛 = argmin{−2 ln βi 𝐿𝑖⁄ }  

𝛽𝑚𝑎𝑥
𝐿 = lnβ𝑖min 𝐿𝑖𝑚𝑖𝑛

⁄  (8) 

Smin = 𝑒−2𝛽𝑚𝑎𝑥
𝐿   

 

Any other direction of space, either tangential or not, can be 
formed by substituting a sub-path on this minimum S(𝜃) direction 
with sub-paths on the rest of directions. But each of these sub-
paths will have, at least, as much attenuation as the former, so we 
conclude that Smin is the absolute minimum of the specific 
attenuation.  

The specific attenuation is also upper-bounded. Its maximum 
can be obtained by constrained maximization of equation (6) 
subject to the restriction in equation (5). Using Lagrange 
multipliers we get: 

 

𝛽𝑚𝑖𝑛
𝐿 = �

ln2 𝛽𝑖

𝐿𝑖2�(ln𝛽𝑥 𝐿𝑥⁄ )2 + �ln𝛽𝑦 𝐿𝑦⁄ �2 + (ln𝛽𝑧 𝐿𝑧⁄ )2
 

(9) 

Smax = 𝑒−2𝛽𝑚𝑖𝑛
𝐿

 

Using these upper and lower limits, a convenient way of 
representing the specific attenuation is by means of the specific 
attenuation factor, O(𝜃), defined as: 

O(𝜃) =
ln(S(𝜃) Smin⁄ )
ln(Smax Smin⁄ ) (10) 

Using O(𝜃), the specific attenuation becomes: 

S(𝜃) = Smin �
Smax
Smin

�
O(𝜃)

= SminΥO(𝜃) (11) 

Where Υ=Smax Smin⁄  is a room dependent figure that quantifies the 
dynamic range of the reflections arriving at a same time. 

The specific attenuation factor is a variable of the geometry of 
the room and the arrival direction, whose value ranges from 0, for 
the direction of minimum attenuation, to 1, for the direction of 
maximum attenuation. Knowing its value for all the virtual sources 
in the room is enough to have a complete knowledge of the 
evolution of reverberation over time. 

O(𝜃) has several interesting properties, particularly its 
probability density function (PDF), 𝑓𝑂(𝑂). In first place, it is 
invariant to uniform scaling of ln βi 𝐿𝑖⁄ . This includes both scaling 
of the dimensions of the room, and raising the reflection 
coefficients βi to a same exponent. For instance, Figure 1 shows 
the PDF of the specific attenuation coefficient for cubic rooms 
with the same absorption coefficient 𝛼 in all its walls. This 
function is independent of the dimensions of the room or the value 
of 𝛼, as long as the room is cubic and homogeneous.  

We have empirically found another interesting property of 
𝑓𝑂(𝑂): in general, it shows a non-descent trend. We believe that 
this is due to the fact that, given a certain path from a virtual source 
to the listener, it is possible to find other sources at the same 
distance by substituting a portion of this path with another. In most 
situations, there will be many more possibilities of finding a 
substituting sub-path with a greater number of reflections than the 
original, than of finding ones with fewer reflections. In general, 
more reflections means more attenuation, and this would justify the 
non-descent nature of 𝑓𝑂(𝑂). Nevertheless, this situation is not 
always accomplished. For instance, if the room has two pairs of 
confronted walls with very low attenuation and small distance, 
while the other pair has bigger attenuation and distance, low 
attenuation paths can be more frequent than high attenuation ones. 
Yet, in our experiments, we have only found this situation in 
extremely irregular and un-homogeneous rooms. 

The approximately crescent trend of 𝑓𝑂(𝑂) implies that the 
paths with the minimum attenuation will also be the less frequent. 
Yet, as the total reverberation will be the combination of all the 
contributions, the asymptotical behavior will be dominated by 
them. On the other hand, for small arrival times there will be little 
attenuation, independently of the value of 𝑂. So, in this case, the 
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global behavior will be dominated by the most frequent values of 
𝑂. This implies that the whole PDF carries valuable information 
about the evolution of reverberation, with the more frequent values 
ruling the initial shape of its energy decay curve, and the rarer 
values ruling the asymptotical behavior.  
 

4. EXPECTED VALUE OF THE REVERBERATION 
INTENSITY 

 
Using the specific attenuation coefficient, the sound intensity 
contribution due to a single virtual source located at a distance 
𝑟 = 𝑐𝑡 in the 𝜃 direction is: 

𝐼𝑖(𝑡) = 𝑊 ·
1

4𝜋(𝑐𝑡)2 · Smin−ct (Υ−𝑐𝑡)O(𝜃) (12) 

In order to estimate the total reverberation, we must account for all 
the virtual sources arriving at time 𝑡. This can be done combining 
them for all possible arrival directions, as in the standard 
geometry-based procedures, or taking all possible values of O(𝜃) 
along with their frequency. 

 If we use this second approach, we need to know how many 
sources we get for each value of O(𝜃), i.e. its PDF 𝑓𝑂(𝑂), and how 
we must combine the individual contribution to get the global 
intensity. 

The question of how to determine 𝑓𝑂(𝑂) on a specific room 
will be subject of further research in the future. By now, on the 
scope of this paper, we will use histograms evaluated using image 
source model-based simulations. This means that the PDF will be 
in the form: 

𝑓𝑂(𝑂) = �𝑓𝑖Π�
𝑂 − 𝑂𝑘
Δ𝑂 �

𝑘

 (13) 

Where Π(O) is the rectangular pulse function, so Π�𝑂−𝑂𝑘
Δ𝑂

� is a 
pulse of amplitude one, width Δ𝑂, and centered in the value 𝑂𝑘, 
and 𝑓𝑘 is the frequency of values of 𝑂 inside this margin. 

The way individual sources are to be combined to get the 
global intensity depends on the correlation between them which, in 
turn, depends on the spectrum of the sound. In the case of virtual 
sources coming from the reflections of a real source, all the sources 
produce the same signal so, in principle, they combine coherently. 
The problem with this coherence assumption is that virtual sources 
do not conform a continuum, but a discrete grid with different 
arrival times that break the coherence. On the other hand, out of 
perfectly impulsive sounds, sound coming from sources at different 
distances will overlap in time. 

In this paper we will consider two extreme opposite different 
conditions: complete incoherence and maximum coherence of the 
virtual sources. 
 
4.1. Source combination assuming complete incoherence 
of the virtual sources 
 
Complete incoherence means that the correlation of the signals is 
zero at the origin. As all the sources produce the same signal with 
different amplitudes and arrival times, this only can happen if the 
signal has a flat spectrum on an infinite bandwidth.  

Assuming complete incoherence, the global intensity due to a 
number of different sources the sum of the individual intensities: 

𝐼𝑇(𝑡) = �𝐼𝑘(𝑡) (14) 

The expected value of  𝐼𝑇(𝑡) for 𝕞(𝑡) sources is: 

𝐸{𝐼𝑇(𝑡)} = �𝐸{𝐼𝑘(𝑡)} = 𝕞(𝑡)𝐸{𝐼𝑘(𝑡)} (15) 

Where we can determine the expected value of one virtual source 
using the PDF of the specific attenuation factor: 

𝐸{𝐼𝑘(𝑡)} = �
𝑊

4𝜋(𝑐𝑡)2 Smin−ct (Υ−𝑐𝑡)𝑂𝑓𝑂(𝑂)𝑑𝑂
∞

−∞
   =

=
𝑊

4𝜋(𝑐𝑡)2 Smin−ct � Υ−𝑐𝑡𝑂𝑓𝑂(𝑂)𝑑𝑂
∞

−∞
 

(16) 

Expression which, assuming the histogram defined in (13), 
becomes: 

𝐸{𝐼𝑘(𝑡)} =

=
𝑊

4𝜋(𝑐𝑡)2 Smin−ct � Υ−𝑐𝑡𝑂�𝑓𝑘Π�
𝑂 − 𝑂𝑘
Δ𝑂 �𝑑𝑂

∞

−∞
=

=
𝑊

4𝜋(𝑐𝑡)2 Smin−ct �𝑓𝑘 � Υ−𝑐𝑡𝑂𝑑𝑂
𝑂𝑘+Δ𝑂 2�

𝑂𝑘−Δ𝑂 2�
=

=
𝑊

4𝜋(𝑐𝑡)2 Smin−ct �𝑓𝑘2
Υ−𝑐𝑡𝑂𝑘
𝑐𝑡 lnΥ sinh �𝑐𝑡

Δ𝑂
2 lnΥ� 

(17) 

And the expected value of 𝐼𝑇(𝑡) for 𝕞(𝑡) sources is: 

𝐸{𝐼𝑇(𝑡)} = 2
𝑊

𝑉 lnΥ
Smin−ct sinh �𝑐𝑡 Δ𝑂2 ln 𝛾�

𝑡 �𝑓𝑘𝛾−𝑐𝑡𝑂𝑘  (18) 

4.2. Source combination assuming maximum coherence 
of the virtual sources 
 
In the case of low frequency signals, the incoherence assumption is 
not applicable because they will present little or none phase lag. 
When sound coming from all the sources is in the same phase, we 
must combine them coherently. 

Coherent signals combine together adding their amplitudes 
instead of their intensities: 

 

�𝐼𝑇(𝑡) = ��𝐼𝑘(𝑡) 
 

(19) 

𝐸 ��𝐼𝑇(𝑡)� = �𝐸��𝐼𝑘(𝑡)� = 𝕞(𝑡)𝐸 ��𝐼𝑘(𝑡)� (20) 

𝐸 ��𝐼𝑘(𝑡)� = � �
𝑊

4𝜋(𝑐𝑡)2 Smin−ct (Υ−𝑐𝑡)𝑂𝑓𝑂(𝑂)𝑑𝑂
∞

−∞
=

= �
𝑊

4𝜋(𝑐𝑡)2 Smin
−ct 2⁄ � Υ

−𝑐𝑡𝑂
2 𝑓𝑂(𝑂)𝑑𝑂

∞

−∞
 

(21) 

Which, using the histogram defined in (13): 

𝐸 ��𝐼𝑘(𝑡)� = �
𝑊

4𝜋(𝑐𝑡)2 Smin
−ct 2⁄ �𝑓𝑘 � Υ

−𝑐𝑡𝑂
2 𝑑𝑂

𝑂𝑘+Δ𝑂 2�

𝑂𝑘−Δ𝑂 2�
=

= �
𝑊

4𝜋(𝑐𝑡)2 Smin
−ct 2⁄ �𝑓𝑘4

Υ
−𝑐𝑡𝑂𝑘
2

𝑐𝑡 lnΥ sinh �𝑐𝑡
Δ𝑂
4 lnΥ� 

(22) 

And the expected value of �𝐼𝑇(𝑡) for 𝕞(𝑡) sources is: 
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𝐸 ��𝐼𝑇(𝑡)� =

=
𝑐√64𝜋𝑊
𝑉 lnΥ Smin

−ct 2⁄ sinh �𝑐𝑡
Δ𝑂
4 lnΥ��𝑓𝑘Υ−𝑐𝑡𝑂𝑘 2⁄  

(23) 

 
5. SIMULATION RESULTS 

 
In order to assess the validity of equations (18) and (23), we 
compare the results given by them with those got with a MATLAB 
implementation of the image source model proposed by Allen and 
Berkley [9]. 

Table 1 shows the results obtained when using our formulae in 
the estimation of the three fundamental parameters of rooms: the 
reverberation time, the intensity level due to reverberation, and the 
energy decay curve. Two kinds of signal are used in the 
comparisons: in the broad band signal experiments, the source 
produces a perfectly impulsive sound (a Dirac impulse) which is 
not further filtered, so the different sources will add un-coherently; 
in the low-pass signal experiments, this impulsive sound is filtered 
with a low-pass filter with cut-off frequency equal to one half of 
the speed of sound divided by the largest dimension in the room. 
This choice of band ensures that virtual sources at similar distance 
add coherently, while keeping the shape of the energy decay. 
Room dimensions and walls attenuation coefficients are chosen so 
that they range all possible situations: Room 1 is cubic (regular) 
and all the walls share the same attenuation coefficient 
(homogeneous); Room 2 is regular, but highly un-homogeneous; 
Room 3 is homogeneous, but highly irregular; and Rooms 4-9 are 
both highly irregular and un-homogeneous. 

In the reverberation time results we can see the very different 
values obtained using the classical Sabine’s formula and the image 
source model (in particular, see Rooms 7 and 9), this is probably 
due to the fact that Sabine’s formula assumes perfectly diffusive 

rooms. On the contrary, our formulae adhere to the values of the 
image source model with an error below 10% in all cases. 

It can also be seen that the image source model and the 
theoretical classical formula for the total intensity of the 
reverberation field, 𝐼 = 4𝑊 𝑅⁄  [11], coincide to a great extent for 
broad-band signals, but differ by more than 20dB for low-pass 
signals. Our formulae coincide with the simulations with an error 
less than 2dB. They also coincide, with less than 3dB root mean 
square error, when the whole energy decay curve is compared. 
 

6. CONCLUSIONS AND FUTURE WORK 
 

As it can be seen in the previous section, the herein proposed 
method provides very good estimation of the energy decay curve 
even in the case of highly irregular and un-homogeneous rooms. 
Yet, this good result is based on the previous knowledge of the 
PDF of the specific attenuation factor of the room. One of our 
close future efforts will be how to infer this PDF out of the 
characteristics of the room. 

In our opinion, extension to non-rectangular rooms or to take 
into account diffusion only require a redefinition of the density of 
sources defined in equation (1), and the evaluation of the 
corresponding PDF of the specific attenuation factor, which will 
surely become time-dependent. Anyway, equations (16) and (21), 
should still apply to these situations. 

Finally, we propose two different approximations for low 
frequency and broad band signals. Future work will also address 
the more interesting case of band-pass signals, as those generally 
considered in the evaluation of audition rooms. 
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 Dimensions 
[m]  

Attenuation 
Coefficients 

Reverberation 
Time (RT60) [s]  

%Error in RT60 Total Intensity  
Level (Lp) [dB] 

Error in Lp 
[dB] 

RMS Error in 
EDC [dB] 

Room Lx Ly Lz Ax Ay Az Sabine 𝑅𝑇∞ 𝑅𝑇0 𝐸𝑅𝑇∞ 𝐸𝑅𝑇0 4𝑊 𝑅⁄  𝐿𝑝∞ 𝐿𝑝0 𝐸𝑝∞ 𝐸𝑝0 𝑅𝑀𝑆∞ 𝑅𝑀𝑆0 
1 10 10 10 0.50 0.50 0.50 0.54 0.43 0.51 -0.14% 0.47% -10.77 -8.54 -30.37 -0.60 -0.45 1.86 1.41 
2 10 10 10 0.90 0.50 0.10 0.54 1.97 2.15 -0.69% 0.20% -10.77 -8.36 -31.92 -1.58 -1.17 1.55 0.98 
3 2.5 10 40 0.50 0.50 0.50 0.31 1.34 0.87 -6.34% -0.94% -13.20 -12.34 -37.26 1.71 -0.60 1.18 0.45 
4 2.5 10 40 0.10 0.50 0.90 0.72 0.63 0.38 -3.39% -1.93% -7.56 -8.19 -29.02 -0.02 -1.34 2.11 1.22 
5 2.5 10 40 0.10 0.90 0.50 0.57 1.35 0.84 -3.02% -1.09% -8.91 -9.60 -32.52 0.05 -1.30 1.68 1.13 
6 2.5 10 40 0.50 0.10 0.90 0.35 2.09 1.88 -5.78% -0.29% -12.20 -10.87 -34.50 0.71 -1.23 1.54 1.06 
7 2.5 10 40 0.50 0.90 0.10 0.28 6.47 7.21 -5.37% 0.76% -14.20 -13.76 -42.04 1.56 -1.24 1.42 1.02 
8 2.5 10 40 0.90 0.10 0.50 0.21 2.20 1.88 -2.68% -0.32% -17.49 -13.46 -39.17 0.82 -1.12 1.56 1.01 
9 2.5 10 40 0.90 0.50 0.10 0.20 6.75 7.57 -1.05% 1.84% -18.84 -15.09 -43.87 -0.62 -1.10 2.68 1.94 

Table 1: Simulation and theoretical results for 9 different rooms. Reverberation Time: Sabine stands for RT60 using Sabine’s formula, 
𝑅𝑇𝑆𝑎𝑏𝑖𝑛𝑒 = 0.161𝑉 𝛼�𝑆⁄ , 𝑅𝑇∞ and 𝑅𝑇0 are the values of 𝑅𝑇60 estimated using the image source model for broadband and low-pass 
signals, respectively; 𝐸𝑅𝑇∞ and 𝐸𝑅𝑇0 are the percent error committed when estimating 𝑅𝑇60 with the formulae proposed in this paper 
for the energy decay curve; Total Intensity Level: 𝐿𝑝 is the energy level in dB, 4𝑊 𝑅⁄  stands for the classical value of the total intensity 
of the reverberant field, 𝐿𝑝∞ and 𝐿𝑝0 are the values of 𝐿𝑝 estimated using the image source model for both kinds of signal, and ,𝐸𝑝∞ 
and 𝐸𝑝0 the error in dB committed using our formulae; 𝑅𝑀𝑆∞ and 𝑅𝑀𝑆0 are the root mean square error committed when 
approximating the energy decay curve (EDC) obtained with the image source model using our formulae. 
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