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ABSTRACT 

This paper applies blind channel identification (BCI) to estimate 

direction of arrival (DOA) of sound sources with a pair of 

binaural hearing aids. It compares the Adaptive Eigenvalue 

Decomposition Algorithm (AEDA) with the Adaptive Principal 

Component Algorithm (APCA) for blindly estimating the impulse 

responses from target to hearing aids and these impulse responses 

are used to estimate DOA. This paper investigates how both the 

time difference and the level difference of the impulse responses 

can be used to estimate DOA, and the performance of both 

algorithms is evaluated for scenarios with different reverberation 

times, different SNR, and different source positions. The paper 

also evaluates the tracking behavior in a dual-talker scenario. The 

results show that AEDA’s DOA performance suffers in the 

presence of noise and reverberation. APCA is fairly insensitive to 

noise, but it can only handle moderate levels of reverberation.  

Index Terms— direction of arrival, binaural hearing aids.  

1. INTRODUCTION AND  

RELATION TO PRIOR WORK 

Understanding speech in noise is a difficult task for many hearing 

aid wearers [1]. For a long time, beamforming algorithms have 

been shown to help in noisy scenarios [2]. With the advent of 

wireless technology [3], binaural beamforming algorithms have 

been applied to further improve speech intelligibility. However, 

the beamforming algorithms often need to know the direction of 

arrival (DOA) of the target sound source.  

Prior work has investigated a wide variety of algorithms to 

estimate DOA of sources for different applications [4]. The blind 

channel identification (BCI) algorithms are especially interesting 

because they can identify the (relative) impulse response from 

target to microphone [5, 6] and these impulse responses can be 

used to enhance the signal [8, 9] as well as to estimate direction 

of arrival  [5, 7, 8, 9]. DOA can be estimated from the geometry of 

the microphone array and the time delays of arrival (TDOA). The 

TDOA can be estimated as the difference in the abscissae of the 

largest values of the estimated impulse responses [4, 5] or the 

abscissa of the largest value of the cross-correlation of the 

estimated impulse responses [7, 8, 9]. Using the estimated 

impulse responses instead of the microphone signals makes the 

DOA estimate less sensitive to signal properties [8]. In [10], the 

authors pointed out the Adaptive Eigenvalue Decomposition 

Algorithm (AEDA) [5] and the Adaptive Principal Component 

Algorithm (APCA) [6] as algorithms that might be useful for 

DOA estimation of sound sources in binaural hearing aids. 

Hearing aids are positioned on the head and that can result in a 

significant difference between the signal levels at the two hearing 

aids. This level difference is also present in the estimated impulse 

responses and can therefore be used as cue for DOA together with 

the TDOA [11]. 

The goal of this paper is to evaluate the performance of a DOA 

method for binaural hearing aids that uses the time difference as 

well as the level difference of the impulse responses that are 

estimated blindly with AEDA or APCA. To that end, simulations 

are done on measured data for scenarios with different SNR’s, 

reverberation times, and source positions. Moreover, a dual talker 

scenario is investigated. For all scenarios, the performance of the 

DOA estimation of AEDA an APCA is reported and compared. 

This paper is organized as follows. Section 2 describes the 

signal model, adaptive algorithms, and the DOA estimation 

methods. Section 3 describes the results of the different 

simulations and Section 4 draws the main conclusions from this 

research.  

2. THEORY 

2.1. Signal Model  

Fig. 1 shows the signal model. A sound source at angle φ from the 

 

Fig. 1. Signal model of BCI for binaural hearing aids [10].  
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head transmits a signal s(k) that arrives at the left and right ear 

through the acoustic channels khl,  and kh ,r .There is also noise 

present at each ear, )(l kn  and )(r kn . The sum of the acoustically 

filtered signals and the noise results in the microphone signal of 

the left hearing aid, )()()( lll knkxky += , and the right hearing 

aid, )()()( rrr knkxky += . In BCI, the algorithms estimate the 

left and right acoustic paths in the vectors 

T
1,l/r1,l/r0,l/rl/r ][ −

∧

= Lhhh Kh ,  (1) 

based on only the most recent observations contained in vectors 
T

l/rl/rl/rl/r )]1()1()([ +−−= Lkykyky Ky . (2) 

2.2. Adaptive Algorithms 

In [10], two BCI algorithms were identified as candidates for on-

line Head-Related Impulse Response (HRIR) estimation with 

hearing aids: Adaptive Eigenvalue Decomposition Algorithm 

(AEDA) and Adaptive Principal Component Algorithm (APCA). 

This section briefly summarizes the two algorithms.  

AEDA [5] poses the BCI task as a minimum eigenvalue 

estimation problem. The error signal is defined as:  

(k)k)(k)k) e(k) r
T

ll
T

r (( yhyh
∧∧

−= .  (3) 

If the adaptive filters match the HRIRs and no noise is present, 

this cross-relation processing would obviously yield an error 

signal 0 e(k) = . AEDA defines the update step of the iterative 

minimization as follows: 

))()()()(()()1(

))()()()(()()1(

rl

r

^

rr

l

^

ll

kkekkekk

kkekkekk

hyhh

hyhh

−+=+

++=+

∧∧

∧∧

µ

µ
. (4) 

The algorithm normalizes for input level by using a normalized 

step factor: 

))()()()(( rr
TT

0 ll
δµµ ++= kkkk yyyy ,  (5) 

where 0µ is the adaptation constant and δ is an offset  to avoid 

divergence at low input levels. After each iteration, a unit-norm 

constraint is enforced via normalization on the estimated filter:  

)()()()(/)()(
rlll/rl/r r

TT

kkkkkk
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+= hhhhhh (6) 

APCA [6] solves the BCI problem as iterative channel 

identification and equalization tasks. First a two-channel matched 

filter array is applied to get an estimate of the source signal: 
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where )(
T

l/r k
↵

∧

h  are the time-reversed acoustic channels. This 

m\atched filter maximizes the SNR of the source signal and this 

operation is also known as focusing in acoustic and seismic 

imaging [9]. Subsequently, the individual error signals are 

calculated:  

 )( - )(  )( l/rl/rl/r k(k) 1k-L yke
∧∧

+= sh ,  (8) 

where T][)(  1)(k- L s  1) (k s(k) sk +−=
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Ks is a vector with the 

most recent equalizer output samples. The estimated source signal 

is used as input signal in an LMS update: 

 )()()()1(
^

l/rl/rl/r kkekk shh µ+=+
∧∧

.  (9) 

Similar to AEDA, the normalized step factor (5) as well as the 

enforcement of the unit-norm constraint (6) is applied after each 

iteration.  

2.3 Direction of Arrival Estimate  

The impulse responses from AEDA or APCA can be used to 

estimate the direction of arrival [7, 8, 9]. Using the impulse 

responses instead of the microphone signals has the advantage 

that the impulse responses have been adapted to the sound source 

and are therefore less noisy and variable than the microphone 

signals themselves. Given the estimated impulse responses )(l kh
∧

 

and )(r kh
∧

, the cross-correlation between the impulse response is 

calculated. 
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The criterion for localization is the absolute value of the cross-

correlation  

,)()( kTJ T ρ=∆∆     (11) 

and sfkT =∆ , where sf  is the sample frequency. The lag that 

corresponds to the maximum is the time difference between the 

microphones:  

))((max TJ T
T

∆∆
∆

.    (12) 

This estimated delay can be converted to a direction of arrival 

estimate using the geometry of the binaural microphone array [8]. 

Since hearing aids are worn on the head, the conversion should 

take into account the propagation of the sound around the head 

which can be modeled as [11]: 

 )(sin)( φφφ +=∆ cdT ,    (13) 

where d is the diameter of the head and c is the speed of sound. 

Besides the time difference, the level difference (due to 

shadowing of the head) between the microphones can also be used 

as a cue for DOA. This level difference is frequency dependent 

and irregular and cannot be easily modeled because of the head 

scattering effect. The most straightforward way is to use a table 

look-up that has been created using transfer function 

measurements ),(l/r ωφH  at 5 degrees interval in an anechoic 

chamber.  

),(),(log20),( lr10 ωφωφωφ HHL =∆ . (14)  

From the estimated impulse responses, the level difference can be 

calculated as 

)()(log20)( lr10 ωωω
∧∧∧

=∆ HHL ,  

where )(l/r ω
∧
H is the frequency-domain representation of )(l/r k

∧

h . 

The following criterion calculates the match between the 

estimated level and the table in a least-squares sense over all 

frequencies ω .  
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where α is chosen to normalize 

2

)(),( ωωφ
∧

∆−∆ LL to )(φρ . A 

combined DOA estimation can be done by combining the time 

difference and level criteria into one criterion [11]:  
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3. RESULTS 

This describes the simulations to evaluate the algorithms.  

3.1 Experimental Set-up  

The simulations were done using recordings with two BTE 

hearing aids mounted on a Knowles Electronics Manikin 

(KEMAR). The recordings were made in four different locations: 

an anechoic chamber (T60 = 0 s), a sound-treated lab (T60 = 0.2 

s), an office (T60 = 0.4 s), and a reverberant room (T60 = 1.0 s). 

The target sound source was 1 m from KEMAR. The level of the 

target sound from the front was set to be 65 dB SPL at the ear. 

The babble noise (used as background noise) was recorded in a 

large food court of a mall during lunch hours. The sample 

frequency was 16 kHz.  

The parameters of the algorithms were optimized to get a fast 

initial convergence and to have as little error as possible after 

convergence for clean speech in the anechoic environment. The 

length of the impulse response is 21 samples, so that it is long 

enough to model sound arriving from +90 or -90 degrees, which 

has the largest time difference. The impulse responses were 

initialized with random values to avoid having any a priori 

information.  

3.2 Anechoic  

To assess the upper boundary on performance, the DOA 

estimation performance of the algorithms, using the time 

difference criterion, the level difference criterion and the 

combined criterion, were assessed in the anechoic chamber 

scenario with steady-state speech shaped noise as target signal.  

Fig. 2 shows the DOA estimation performance of both algorithms 

in steady state after convergence. DOA estimation performance is 

fairly similar for both algorithms and it is better for sources from 

the front and it is worse for sources from the side. 

 

Fig. 2. Estimated angle of arrival versus actual angle for speech 

shaped noise in an anechoic chamber for the AEDA and APCA.  

Fig. 3 analyzes this in detail by plotting the time-difference (12), 

the level difference (15), and the combined criterion (16) versus 

the angle for a source at 0 degrees and a source at 45 degrees. 

The top plots in Fig. 3 show the criteria for the source at 0 

degrees. The maximum of the criteria are at 0 degrees indicating 

that this is the most likely direction of the source. The time-

difference criterion (∆T) has a sharper peak for APCA than for 

AEDA which means that APCA’s DOA estimation (based on time 

difference) is more reliable than AEDA’s DOA estimation. The 

level-difference criterion (∆L) is similar for AEDA and APCA 

and the combined criterion improves the reliability of DOA 

estimation for APCA and AEDA. The bottom plots in Fig. 3 show 

the criteria for the source at 45 degrees. The maximum of the 

criteria match again the actual direction of the source (45 

degrees). However, the maximum of the criteria is in general not 

as pronounced for this source direction.  

For AEDA, the time difference criterion is quite flat and the 

second largest peak is almost as large as the largest peak. 

Although the level-dependent criterion is also fairly flat for source 

directions around the actual source direction, the overall criterion 

shows a more distinct peak than the individual criteria.  

For APCA, the time-difference criterion has a more distinct peak 

resulting in a more reliable DOA estimate. The level-difference 

criterion only slightly improves on the time-difference criterion.  

These results have shown that APCA localization is more reliable 

in the anechoic scenario and the next sections will investigate 

how the results change in more adverse scenarios where speech is 

the source signal and noise or reverberation are present. 

 

Fig. 3. Criteria as function of angle for source at 0 degrees (top) 

and at 45 degrees (bottom) for AEDA (left) and APCA (right).  

3.3 Reverberation  

This section assesses the performance of the algorithm in 

environments with different amounts of reverberations. The 

performance of DOA estimation for a single speaker at 0, 45 and 
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90 degrees is assessed with both algorithms. Since the signal is 

now speech instead of steady-state speech shaped noise, the 

localization performance is quantified as the percentage of 

localizations that are within 5 degrees of the actual position. 

Algorithm performance is investigated after initial convergence 

(first 5 s).  

Fig. 4 shows that the performance of the DOA estimation strongly 

depends on the amount of reverberation and the angle of 

incidence. The performance decreases for increasing reverberation 

time and the performance is poor for high reverberation. APCA is 

especially for high reverberation much better than AEDA. 

 

Fig. 4. Percentage correct for DOA estimation as function of 

reverberation time in seconds (see legend) and angle of target (on 

x-axis) for AEDA and APCA. 

3.4 Noise  

Because beamforming can be used to improve speech 

intelligibility in noise, the performance of DOA estimation in 

noise is also important. The performance of DOA estimation of a 

single speaker at 0, 45, and 90 degrees is assessed when recorded 

babble noise is present at SNR decreasing from 20 dB to 0 dB in 

steps of 5 dB.  

Fig. 5 shows the performance, which has been calculated as in the 

previous section. The difference between the algorithms is quite 

large. APCA perform well for even the lowest SNR, while AEDA 

performs poorly for SNR smaller than 15 dB. 

 

Fig. 5. Percentage correct for DOA estimation as function of SNR 

(see legend) and angle of target (on x-axis) for AEDA and APCA  

3.5 Dual Talker Scenario 

This section evaluates the ability of the algorithms to follow two 

talkers who speak one sentence (3s) in turn. One talker is at +45 

degrees and the other talker is at -45 degrees. There is no 

background noise and no reverberation present. Fig. 6 shows that 

APCA is able to follow the active talker quite well and has found 

the correct location halfway through the sentence. There is slight 

overshoot during re-convergence. An analysis (similar to Fig. 3) 

shows that the time difference criterion is the most important 

criterion in the localization. 

 

Fig. 6. Estimated angle of incidence versus time for AEDA and 

APCA. The color of the background indicates the angle of the 

source: white = 45 degrees. Non-white = -45 degrees.  

AEDA is able to detect a change in direction, but it is not able to 

estimate the correct direction for either speaker. The DOA 

estimate of AEDA uses only the level difference criterion, since 

the time-level criterion shows no distinction between the sources. 

4. CONCLUSIONS 

This paper applied blind channel identification to the problem of 

Direction of Arrival (DOA) estimation with binaural hearing aids. 

On the basis of previous research, APCA and AEDA were chosen 

as algorithm candidates for this investigation. The algorithms 

estimated the impulse responses from the sound source to the 

hearing aids and used these impulse responses to estimate DOA 

of the sound source. The results of the simulations show that 

AEDA cannot estimate DOA well when even modest levels of 

noise and reverberation are present. This is because that the time-

level criterion of AEDA is flat, so that multiple directions are 

almost equally likely to be the direction of the source. APCA is 

fairly insensitive to noise and can handle modest levels of 

reverberation too. For a practical application, APCA would need 

to perform better since reverberation times of 0.4s is not 

extraordinary and desired sources might be further away than 1 

meter. Further improvements might be gained by using a 

frequency–domain implementation or step-size control. In 

addition, future evaluations should include scenarios with both 

noise and reverberation. Finally, the computational complexity 

has to be evaluated to ensure that the algorithms are feasible for 

hearing aids.  

441



5. REFERENCES 

[1] S. Kochkin. MarkeTrak VII: “Obstacles to adult non-user 

adoption of hearing aids,” The Hearing Journal, vol. 60 (4), pp. 

27-43, April 2007. 

 

[2] P.M. Peterson, N.I. Durlach, W.M. Rabinowitz, and P.M. 

Zurek. “Multimicrophone adaptive beamforming for interference 

reduction in hearing aids,” J Rehabil. Res. Dev., vol. 24(4), 

pp.103-10. Fall 1987 

 

[3] A. Boothroyd, K. Fitz, J. Kindred, S. Kochkin., H. Levitt, B.C. 

Moore, B.C. and  J. Yanz,. “Hearing aids and wireless 

technology,” Hearing Review, vol. 14(6), pp. 44-47 (2007) 

 

[4] N. Madhu, and R. Martin. "Acoustic source localization with 

microphone arrays," Advances in Digital Speech Transmission R. 

Martin, U. Heute, C. Antweiler (Eds.), John Wiley & Sons Ltd, 

Chichester, England, (2008), pp. 135-166. 

 

[5] J. Benesty, “Adaptive eigenvalue decomposition algorithm for 

passive acoustic source localization,” J. Acoust. Soc. Am., vol. 

107, no. 1, pp. 384–391, Jan. 2000. 

 

[6] D. Schmid and G. Enzner, “Robust subsystems for iterative 

multichannel blind system identification and equalization,” in 

Proc. IEEE Pacific Rim Conf. on Commun., Comput. and Sig- 

nal Process., Victoria, Can., Aug. 2009, pp. 889–893. 

 

[7] M. Omologo and P. Svaizer, “Acoustic event localization using 

a crosspower-spectrum phase based technique,” IEEE 

International Conference on Acoustics, Speech, and Signal 

Processing,  pp.II/273-II/276 Apr 1994. 

 

[8] H.J.W. Belt and C.P Janse. “Signal Localization 

Arrangement”. US Patent 6,774,934, August 2004.  

 

[9] J. Schmalenstroeer, R. Haeb-Umbach, “Online Speaker 

Change Detection by Combining BIC with Microphone Array 

Beamforming”, in Proc. Interspeech 2006, Pittsburgh, USA, Sept. 

2006 

 

[10] G. Enzner, I. Merks, and T. Zhang, “Adaptive filter 

algorithms and misalignment criteria for blind binaural channel 

identification in hearing-aids,” Proc. 20th European Signal 

Processing Conference. Bucharest, Romania, Aug. 2012, pp. 315-

319.  

 

[11] M. Raspaud, H. Viste, G. Evangelista, “Binaural Source 

Localization by Joint Estimation of ILD and ITD,” Audio, Speech, 

and Language Processing, IEEE Transactions on , vol.18, no.1, 

pp.68-77, Jan. 2010 

 

[12] D. de Vries and A. J. Berkhout. “Wave theoretical approach 

to acoustic focusing,” J. Acoust. Soc. Am. Volume 70, Issue 3, pp. 

740-748, Sept. 1981. 

442


