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ABSTRACT

It is well-known that the performance of acoustic multichan-

nel equalization (MCEQ) algorithms depend on the modeling

delay that has to be pre-defined. In this work, we propose a

MCEQ algorithm which achieves full equalization of acous-

tic room impulse responses in the presence of blind-system

identification error. We achieve the above by modeling the

inverse filters using multiple delays via columns of the iden-

tity matrix which serve as basis vectors for this time-domain

sub-space approach. We further show that the proposed algo-

rithm allows one to determine an optimal set of inverse filters

corresponding to an appropriate modeling delay.

Index Terms— Multichannel equalization, dereverbera-

tion, acoustic impulse responses

1. INTRODUCTION

Speech signals acquired by distant microphones in an en-

closed space are often degraded by reverberation which ad-

versely affects speech quality and intelligibility. One ap-

proach to achieve dereverberation is to equalize received sig-

nals using inverse filters that are computed from the acoustic

impulse response (AIR) estimates provided by blind system

identification (BSI) algorithms [1]–[4].

Since direct inversion results in an unstable inverse filter,

single- or multi-channel equalization techniques have been

employed for the equalization of non-minimum phase AIRs.

Unlike single-channel techniques which result in approximate

equalization only [5]–[7], the multiple-input/output inverse

theorem (MINT) algorithm, which assumes co-prime chan-

nels [8], computes exact inverse filters [6]. In practice how-

ever, BSI algorithms do not provide error-free AIR estimates.

Since MINT is not robust to such system mismatches, equal-

ization using MINT in the presence of AIR estimation errors

will introduce further distortion in the equalized output sig-

nal. A regularized least-squares approach has been proposed

in [9] to improve the robustness of MINT. Channel shortening
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(CS) techniques [10]–[13] which achieve equalization of the

late reverberation only (as opposed to the whole AIR) have

also become increasingly popular in recent years. Although

CS algorithms only perform partial equalization, they achieve

higher robustness to BSI errors and have shown to enhance

speech intelligibility. Recently, a fast frequency-domain algo-

rithm showing higher robustness to BSI errors has also been

proposed in [14].

In this paper, we propose a subspace-based approach to

achieve full equalization of AIRs. As opposed to existing

MINT [6] and CS [11]–[13] algorithms which estimate a sin-

gle set of inverse filters across multiple channels, we employ

multiple sets of inverse filters in a time-domain subspace for

estimation and equalization. Results presented in [9], [15],

[16] have shown that the equalization performance of existing

algorithms is highly dependent on the choice of the modeling

delay that has to be pre-defined. By employing columns of the

identity matrix as basis vectors, we show that our proposed

time-domain subspace approach is equivalent to modeling the

inverse filters using multiple delays. Compared with existing

algorithms, our formulation further allows one to determine

an optimal set of inverse filters (with the appropriate delay)

to achieve minimum equalization error. In addition, we show

that the proposed approach not only is robust to BSI error, it

can also achieve full equalization resulting in an improvement

in PESQ scores compared to existing techniques.

2. MULTICHANNEL EQUALIZATION

Under noiseless condition, a signal xm(n) received by the
mth microphone of an M -channel acoustic system is given
by xm(n) = hm ∗ s(n),m = 1, . . . ,M, where s(n) is
the source signal, hm is the AIR between the source and
the mth microphone and ∗ is the linear convolution opera-
tor. In multichannel equalization (MCEQ), a set of filters
gm = [gm,0, . . . , gm,Lg−1]

T is estimated corresponding to

hm = [hm,0, . . . , hm,Lh−1]
T , where Lg and Lh are the

length of gm and hm, respectively. Given a set of M AIRs,
the MINT algorithm estimates the exact inverse filters, in
theory, if the channels are co-prime [6] satisfying the relation

M∑
m=1

HT
mgm = d, (1)
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where Hm is a Lg × Ld filtering matrix constructed from
hm with Ld = Lg + Lh − 1. The Ld × 1 vector d =
[01×τ , 1,01×(Ld−τ−1)]

T is a Kronecker delta function where
an important parameter τ , defined as the modeling delay, has
been incorporated so as to compensate for any non-causality
of the MCEQ filter g = [gT

1 , . . . ,g
T
M ]T [9] and 01×τ de-

fines a 1 × τ null vector. From (1), the MCEQ filter can be
estimated using [17]

ĝ = arg min
g

‖HTg − d‖22 = (HT )+d, (2)

where (.)+ is the matrix pseudo-inverse operator, ĝ is an esti-

mate of g, H = [HT
1 , . . . ,H

T
M ]T . In practice, ĝ is computed

using an estimate Ĥ = [ĤT
1 , Ĥ

T
2 , . . . , Ĥ

T
M ]T of H which

is constructed from ĥm,m = 1, . . . ,M, obtained using BSI

algorithms such as presented in [1]–[4]. It is therefore impor-

tant for equalization algorithms to be robust to BSI errors.

The inverse of a mixed-phase sequence is, in theory, infi-

nite in length and non-causal [18]. In practice however, to

achieve minimum-norm solutions for the case of M ≥ 2,

one often choose a finite filter length Lg ≥ Lc, where Lc =
�Lh−1
M−1 � [19]. It has further been shown in [9], [13] that the

equalization error is proportional to the energy of ĝ and hence

an appropriate choice of Lg will result in minimum-energy fil-

ters, increasing the robustness to BSI errors and noise. How-

ever, for large Lh, we often choose Lc ≤ Lg < Lh for prac-

ticality [19]. With Lg < Lh, the selection of an adequate τ is

important to ensure good equalization performance [9].
To elaborate the importance of τ and its effect on MINT,

we evaluated the equalization performance using ĝ computed
for 0 ≤ τ ≤ Ld − 1 where M = 5 synthetic AIRs, each
of length Lh=512, were generated using the method of im-
ages [20] at fs =8 kHz. Three sets of AIRs were generated
inside a room of dimension 6×5×3 m3 for source-sensor
distance r = 0.3, 3.2 and 7.1 m. Estimated AIRs were then
simulated by perturbing hm as

ĥm = (ILh + εm)hm, (3)

where εm = diag(εm,0, . . . , εm,Lh−1) such that Mm =
10 log10 σ

2
ε = −40 dB is the system mismatch and εm,i

is a zero-mean white Gaussian random variable of variance

σ2
ε . In this illustrative example, we have used Lg=Lc giving

Ld=639 and ĝ was computed from Ĥ using d with a model-

ing delay τ and (2). For each set of AIRs, we then computed

e(τ)=10 log10 ‖d−HT ĝ‖22 dB for 0 ≤ τ ≤ Ld − 1 in order

to quantify the equalization of H. We note from Fig. 1(a) that

the optimal value of τ is dependant on the AIRs. For the set

of AIRs with r=0.3 m, e(τ)=−45 dB is the lowest when

τ = 29. However this choice of τ will increase e(τ) by 70
and 85 dB when r = 3.2 and 7.1 m, respectively. In addi-

tion, for an arbitrarily chosen τ= Lh/2, the set of AIRs for

r=7.1 m gives a lower e(τ)≈−4 dB compared to e(τ)≈ 26
and 30 dB for the case of r = 0.3 and 3.2 m, respectively.

These results explicitly show that the selection of τ is crucial

in the process of AIR equalization when Lg<Lh. In practice,

H is unknown and hence evaluating e(τ) to obtain an optimal

τ corresponding to the lowest e(τ) is not possible.
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Fig. 1. a) Variation of e(τ) with τ , and b) variation of ρ(l) with l, for

different AIR sets.

3. THE PROPOSED MCEQ ALGORITHMS

3.1. Equalization using multiple filters (MCEQ-MF)
We propose to achieve frame-by-frame equalization where
the received signals are first partitioned into K overlap-
ping frames, each of length Lx, with a frame shift of N
samples, where 1 ≤ N ≤ L and L = Lx + Lh − 1.
This time-domain algorithm can be characterized by an
identity matrix IL = [i1, . . . , iL], where each basis vector
il = [01×(l−1), 1,01×(L−l)]

T is used to define a subspace in
the time domain. Therefore, to describe the proposed MCEQ
multiple filter (MCEQ-MF) algorithm, we first express the
kth clean speech frame s(k) = [s(kN + Lx), . . . , s(kN +
Lx −L+ 1)]T , where s(n) = 0 ∀ n < 0. We note that since

s(k) = ILs(k), (4)

the lth element corresponding to the lth subspace of s(k) can
be expressed using the lth basis vector as

s(kN + Lx − l + 1) = iTl s(k), l = 1, . . . , L. (5)

The basis vectors therefore allow one to define time-delayed

elements of a signal vector. In addition, s(k) =
∑L

l=1 s(kN+
Lx− l+1)il. With Hm = ILx

HmIL and (4) we can express,
similar to (4), the kth frame of the received signal by

xm(k) = [xm(kN + Lx), . . . , xm(kN + 1)]T = Hms(k)

= ILxxm(k), m = 1, . . . ,M. (6)

Defining gm,l = [gm,l(1), . . . , gm,l(Lx)]
T as the mth

channel inverse filter for the lth subspace, we can estimate,
using these subspace filters, the lth subspace of s(k) given by

ŝ(kN+Lx−l+1) =
M∑

m=1

gT
m,lxm(k) =

( M∑
m=1

gT
m,lHm

)
s(k), (7)

where we have utilized (6). If the AIRs are co-prime, perfect
estimate of s(kN + Lx − l + 1) is theoretically possible if

M∑
m=1

gT
m,lHm = dT

l , (8)

where dl is a Kronecker delta function corresponding to the
lth subspace such that τ = l − 1 defines the relationship be-
tween modeling delay and the subspace index. Therefore,
in practice, each of these inverse filters, which corresponds
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to the lth subspace and comprises of a set of inverse filters

(across M channels), can be estimated using Ĥ as

ĝl = [ĝT
1,l, . . . , ĝ

T
M,l]

T = (ĤT )+dl. (9)

Defining D = [d1, . . . ,dL], the entire set of inverse filters
can be obtained across all L subspaces using

Ĝ = [ĝ1, . . . , ĝL] = [ĤT ]+D, (10)

where D is also equivalent to IL which corresponds to L pos-

sible delays.
Employing the filters obtained by the proposed MCEQ-

MF algorithm in (10), the lth coefficient of the kth frame
source signal is estimated using xm(k) given by

ŝ(kN + Lx − l + 1) = ĝT
l [x

T
1 (k), . . . ,x

T
M (k)]T . (11)

The kth frame of the recovered speech is related to the above
by

ŝ(k) =

L∑
l=1

ŝ(kN + Lx − l + 1)il. (12)

The above implies that L sets of M equalization filters,

each of length Lx, are used for recovering s(k). For bet-

ter reconstruction, overlapped windows can be applied for

data partitioning and only a segment [ŝ(kN + Lx + (β −
1)L + 1), . . . , ŝ(kN +Lx + (β− 1)L+N)] from ŝ(k) is

required to construct ŝ(n), where β = (ls − 1)/L with

1 ≤ ls ≤ L − N + 1. Hence only N corresponding

sets of filters [ĝls , . . . , ĝle ] = [HT ]+[dls , . . . ,dle ], where

le = ls + N − 1, need to be estimated. To prevent data loss

due to truncation, βL and L(1− β)−N zeros are padded to

the beginning and the end of xm(n), respectively.

3.2. Insights into the MCEQ-MF algorithm
The relationship between MCEQ-MF and MINT can be ex-

plained by noting that the subspace operator il contains delay

information of the lth coefficient in s(k). Therefore, while

MINT employs a single filter ĝm per channel to recover all

samples in s(n), MCEQ-MF estimates and employs a dedi-

cated filter ĝm,l per channel for only the lth coefficient in ŝ(k)
described by (11). The link between MCEQ-MF, applying ĝl

estimated using (9) and MINT with τ=l−1, can be described

by letting the frame shift N = 1 in (11) and recovering only

the lth sample in each frame. Signal ŝ(n) can be obtained by

concatenating ŝ(k + Lx − l + 1), k = 0, . . . ,K − 1, where

K is the length of the zero padded xm(n) since N = 1.

We explain why MCEQ-MF outperforms MINT with an

inadequate τ by first noting that D consists of all L possi-

ble delays and ŝ(k) is obtained using multiple sets of filters

ĝl, l = ls, . . . , le, with each set corresponding to τ = l − 1
across the M channels. Application of multiple delays in

MCEQ-MF results in a smaller mean-square error (MSE) than

MINT with an inadequate choice of τ since, in MCEQ-MF,

each coefficient of s(k) is estimated using a dedicated set of

inverse filters. While the estimation error is common across

all the elements in s(k) for MINT due to the application of

a single set of inverse filters, the error associated with each

element is different for MCEQ-MF.
To quantify the improvement of MCEQ-MF over MINT

using an inadequate τ in the presence of BSI error, we let

Ĥ=H+E , where E=[ET
1 , . . . ,ET

M ]T is a MLg × L matrix
constructed from the estimation error. For MINT, with N=1
and defining p=k+Lx−l+1, we can express (11) as

ŝ(p)=

M∑
m=1

ĝT
m,l[(Ĥm − Em)s(k)] = s(p)− δ(p), (13)

where δ(p) =
∑M

m=1 ĝ
T
m,lEms(k) = ĝT

l η(k) denotes the

reconstruction error, η(k) = [ηT
1 (k), . . . ,η

T
M (k)]T and

ηm(k) = Ems(k). For MINT, the MSE corresponding to

equalization of s(n) using a specific τ , which results in a

ĝl where l = τ +1, is given by ξMINT = ĝT
τ+1Rηĝτ+1,

where Rη = E[ηT (k)η(k)] and E(.) denotes the expecta-

tion operator. As opposed to the above, for MCEQ-MF with

N=le−ls+1 sets of inverse filters, ξMF=
1
N

∑le
l=ls

ĝT
l Rηĝl.

We note that, for an inappropriate choice of τ , ξMF < ξMINT

as a consequence of averaging. Therefore, MCEQ-MF en-

sures a lower MSE compared to MINT with an inappropriate

choice of τ .

3.3. Equalization using optimal filter (MCEQ-Fopt)
Using the inherent property of MCEQ-MF, it is also possible

to find a single set (out of the L sets) of M inverse filters

that yields the minimum equalization error, corresponding to

the optimal delay τopt, from Ĝ. Compared to performing an

iterative search for the optimal τ using MINT, the proposed

algorithm is a better implementation.
We first show that the optimal filter ĝ′

l corresponding to
the τopt achieves the smallest energy which is in accordance
with results shown in [9], [15]. Letting dl′ denote the opti-
mal desired response, the least-square error obtained with an
arbitrarily chosen ĝl is then given by

‖HT ĝl − dl′‖22 = ‖HT (ĝl − ĝl′) + (HT ĝl′ − dl′)‖22. (14)

For the optimal solution ĝl′ we achieve the least squared
error HT ĝl′ − dl′ , which is in the null space of H giv-
ing H(HT ĝl′ − dl′) = 0MLg×1 [21]. Hence, [HT (ĝl −
ĝl′)]

T (HT ĝl′ − dl′) = 0, which implies that HT (ĝl − ĝl′) ⊥
(HT ĝl′ − dl′). Therefore ‖HT ĝl − dl′‖22 = ‖HT (ĝl −
ĝl′)‖22 + ‖HT ĝl′ − dl′‖22. For ĝl �= ĝl′ , we have

‖HT ĝl′ − dl′‖22 < ‖HT ĝl − dl′‖22 (15)

since HT (ĝl − ĝl′) �= 0L×1. From (15) we can deduce that,

for the optimal least-square solution, ‖ĝl′‖22 < ‖ĝl‖22, l =
1, . . . , L, l �= l′. Hence the inverse filter corresponding to the

τopt has the lowest energy and it is therefore expected that ĝl′

can achieve the smallest equalization error.

We investigate the relationship between the estimation er-

ror and filter energy by plotting the filter-norm ρ(l) = ‖ĝl‖2
for the same sets of AIRs described in Section 2 as shown in

Fig. 1(b). Comparing Figs. 1(a) and 1(b), we can see that the

plots look almost identical, except for the scale, i.e., the range
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Fig. 2. Equalization performance measured using EDCs for various equal-

ization algorithms.

of τ for which e(τ) and ρ(l) is minimum is the same. This

implies that the delay associated with the lth subspace giv-

ing the smallest estimated error e(τ) is equivalent to that giv-

ing the smallest ρ(l), and the corresponding inverse filter set

ĝl′ = [ĝT
1,l′ , . . . , ĝ

T
M,l′ ]

T achieves the best equalization per-

formance. In MCEQ-Fopt, as opposed to MCEQ-MF where

each element of s(k) is estimated using a dedicated filter, the

full length s(n) is estimated using a single set of filters ĝl′

as ŝ(n) =
∑M

m=1 Ĝ
T
m,l′xm(n) where Ĝm,l′ is the filtering

matrix of ĝm,l′ .

4. SIMULATION RESULTS

We first compare the equalization performance of the pro-

posed MCEQ-MF and MCEQ-Fopt algorithms with MINT,

and the relaxed multichannel least squares (RMCLS) algo-

rithm [11], which is a CS-based approach. In this paper we

have chosen Lg = Lc [13] and l = �Lg/4�,. . ., �Lg/2� for

MCEQ-MF. We used two recorded AIRs from the MARDY

database [22], which were re-sampled to 8 kHz and truncated

to Lh = 2000. Equalization was then achieved using the in-

verse filters estimated from ĥm,m = 1, 2, simulated using (3)

with Mm=−20 dB. We used a commonly chosen value τ=0
for MINT, and a relaxation window length of Lw = 50 ms

for RMCLS [12]. For MCEQ-MF, to compute the desired

response d̂, each hm was partitioned into frames of length

Lx=Lg after zero padding to a length (�Lh/N�−1)N+Lg ,

where in this example N = 501 is equal to the number of

subspaces used for reconstruction. Frame-wise equalization

was then performed using d̂(k) =
∑le

l=ls
d̂(k, l)il, where

d̂(k, l) = ĝT
l [h

T
1 (k), . . . ,h

T
M (k)]T , l = 500, . . . , 1000,

while hm(k) and d̂(k) denote the kth frame of hm and d̂,

respectively. The full-length d̂ was obtained using d̂(k).

In Fig. 2, we show the energy decay curve (EDC) [23]

of d̂ achieved with each algorithm, truncated to Lh samples,

along with the EDC of the recorded AIRs (averaged across the

channels). This result shows that, in the presence of system

mismatch, MINT achieves a lower decay rate of the EDC than

that of the AIRs, which implies that MINT with an arbitrary

choice of τ = 0 fails to achieve equalization. The RMCLS

algorithm achieves better suppression of the late reverbera-

tion, while the early reflections are not fully equalized. On

the other hand, in addition to achieving better equalization of

the early reverberation than existing techniques, the proposed

algorithms achieve comparable suppression of the late reflec-
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Fig. 3. The SRRseg achieved for speech equalized with (a) MCEQ-Fopt,

(b) MCEQ-MF, (c) MINT, and (d) noisy reverberant data.

Table 1. PESQ scores.
Method Mm = −40 dB Mm = −20 dB

MINT 2.48 2.19

RMCLS 2.86 2.73

MCEQ-MF 3.3 2.74

MCEQ-Fopt 3.36 3.1

tions to RMCLS.

Next, to compare the robustness of the algorithms to sys-

tem mismatches in terms of segmental signal-to-reverberation

ratio (SRRseg) [23], we generated a set of five synthetic AIRs

each at twenty different locations with the same setup as de-

scribed in Section 2 where Lh = 2000. With an SNR =
40 dB, equalization was then achieved for −80 ≤ Mm ≤
0 dB. We have not included RMCLS in this comparison since

CS algorithms, which deal with perceptual quality only [11],

result in a lower SRRseg as a result of partial equalization.

From the SRRseg, averaged across the twenty sets of AIRs,

shown in Fig. 3, we note that the proposed MCEQ-MF and

MCEQ-Fopt algorithms outperform MINT exhibiting higher

robustness to additive noise and BSI errors.

We also compare the perceptual quality of the equalized

signals with the clean speech signal as the reference using

PESQ [24] for the same set of recorded AIRs used in the first

simulation. Equalization was performed on the reverberant

data with Mm = −40 and −20 dB at SNR = 40 dB with

Lw = 50 ms for RMCLS. The PESQ for signal correspond-

ing to the first channel was computed as 2.52. From Table 1

we note that MINT results in the lowest PESQ scores indi-

cating further degradation in the perceptual quality. On the

other hand, the proposed MCEQ-MF and MCEQ-Fopt algo-

rithms achieve the highest PESQ scores as a result of better

equalization performance.

5. CONCLUSION

By applying multiple sets of inverse filters, the proposed

MCEQ-MF outperforms MINT using an inadequate mod-

eling delay. In the proposed MCEQ-Fopt algorithm, equal-

ization is performed using an optimal set of inverse filters

thereby achieving higher robustness to BSI errors and better

performance. Unlike CS algorithms, which perform partial

equalization to achieve robustness, the proposed algorithms

attain robust full equalization of the AIRs. Simulation results

show that the proposed algorithms exhibit higher robustness

to AIR estimation errors and achieve better equalization.
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