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ABSTRACT

Creating an immersive listening experience and providing the audi-

ence with improved spatial realism is the goal of many adaptive au-

dio reproduction techniques such as room equalization or crosstalk

cancellation. The majority of these approaches currently relies on

acoustic impulse responses (AIRs) that have been measured prior to

the actual audio reproduction. In order to maintain a high degree of

adaptivity, however, the AIRs need to be estimated online during the

reproduction process, which turns out to be a severely ill-conditioned

problem due to the high inter-channel correlation of the loudspeaker

signals. In this paper, we present a novel approach to MISO sys-

tem identification with realistically correlated excitation. Based on

the idea of separate treatment of correlated and uncorrelated signal

components, we propose two extended filter structures for gradient-

descent-based adaptive system identification and provide theoretical

analysis and experimental validation of their effectiveness.

Index Terms— room acoustics, multichannel acoustic system

identification, nonuniqueness, gradient descent algorithm.

1. INTRODUCTION

One of the most ambitious goals in modern audio reproduction pro-

cessing is to provide the audience with an immersive listening envi-

ronment and to create an improved spatial realism in the displayed

acoustical scene [1]. To this end, several techniques have been pro-

posed to modify room acoustics by means of room equalization [2,

3, 4] or listening room compensation [5, 6]. Other works investigate

crosstalk cancellation to present binaural recordings or binaurally

rendered signals directly to the listener’s ears without the cumber-

some use of headphones [7, 8, 9]. Combined solutions [10] and ap-

proaches aiming at physical sound field reproduction [11, 12] also

provide promising results.

The majority of these approaches, however, relies on a linear

description of the acoustical transmission in terms of point-to-point

acoustic impulse responses (AIRs). Typically, these AIRs are mea-

sured prior to the audio reproduction process. Although most of the

proposed reproduction techniques are adaptive by themselves, a high

degree of adaptivity can only be maintained if the AIRs are also es-

timated online by means of multichannel system identification. This

implies that no probe or measurement signals can be displayed via

loudspeakers but only the loudspeaker signals provided by the repro-

duction application are available for estimation. These signals are,

however, highly mutually correlated since they contain spatial cues

for the listener. Thus, the adaptive acquisition of AIRs during sound

reproduction is in fact a supervised multichannel system identifica-

tion problem with highly correlated system excitation.

A very similar problem is encountered in stereophonic acous-

tic echo cancellation (SAEC) and in this context it has been shown

that the problem is severely ill-conditioned in a mathematical sense

[13, 14]. In the respective SAEC literature, this issue is primar-

ily tackled by decorrelating the system excitation, i.e., altering the

loudspeaker signals in order to break up their linear dependency and

thereby improving the conditioning of the underlying mathematical

problem. Several approaches have been investigated in this field,

ranging from classical nonlinear [13, 15] and time-variant [16, 17]

preprocessing to recent resampling [18], time-reversal [19], or psy-

choacoustically motivated techniques [20]. A disadvantage common

to all decorrelation preprocessing, however, is a degradation of sig-

nal quality, e.g., spatial perception of the stereo signal. Although the

distortions introduced by state-of-the-art decorrelation may be tol-

erable in speech communication applications, these techniques may

not be suitable for high-fidelity audio reproduction setups.

In this contribution, we assume that the loudspeaker signals of

reproduction applications can be decomposed into correlated and un-

correlated components. On this basis, we propose a novel process-

ing strategy for the identification of acoustic multiple-input single-

output (MISO) systems by explicitly exploiting the characteristics

of the isolated excitation components. In particular, we present two

extended filter structures that can be implemented with state-of-the-

art system identification techniques and allow for improved system

identification performance compared to the conventional scheme.

This paper is structured as follows. Sec. 2 introduces the signal

model and problem formulation. Then, Sec. 3 describes the general

idea of separated input signal components and presents two filter

structures treating these components as individual excitations. An

analysis of these structures in the context of gradient-descent-based

system identification is given in Sec. 4. Experimental results are pre-

sented and discussed in Sec. 5. Sec. 6 concludes this contribution.

Throughout this paper, we will use the following notation. Bold

lower and upper case letters refer to vectors and matrices, respec-

tively, while non-bold letters denote scalar quantities. Matrices I

and 0 are appropriately sized identity and zero matrices, respec-

tively, and superscript ·T denotes transposition. E{·} is statistical

expectation, ∇ is the gradient operator with respect to the quantity

specified by a subscript, and ‖ · ‖ denotes the l2 vector norm.

2. SIGNALMODEL

A general multiple-input multiple-output (MIMO) system identifica-

tion task in reproduction applications can be decomposed into sev-

eral P -channel MISO system identification problems as illustrated

in Fig. 1. Loudspeaker signals xi(k) for i = 1 . . . P at discrete

time k are convolved with the AIRs hi = [hi(0) · · · hi(Lh − 1)]T

of length Lh to form an audio signal d(k). Adding independent

observation noise n(k) to d(k) then yields signal y(k) that is ob-
served at a reference microphone. By defining excitation vectors
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Fig. 1. MISO reproduction setup.

x
′

i,k = [xi(k) · · · xi(k − Lh + 1)]T , y(k) can be expressed as

y(k) =
P
∑

i=1

x
′T
i,khi + n(k)

= x
′T
k h+ n(k)

= d(k) + n(k) , (1)

where h =
[

h
T
1 · · · hT

P

]T
and x

′T
k =

[

x
′T
1,k · · · x′T

P,k

]T
are

stacked versions of the AIRs and excitation vectors, respectively.

We further assume that excitations xi(k) can be decomposed as

xi(k) = zi(k) + vi(k) , (2)

where zi(k) are correlated signal components and vi(k) denote un-
correlated components, i.e., ∃κ, i 6= j E{zi(k + κ)zj(k)} 6= 0,
E{vi(k + κ)vj(k)} = 0 ∀κ, i 6= j, and E{zi(k + κ)vj(k)} =
0 ∀κ, i, j. In the following, the correlated and uncorrelated sig-

nal components will therefore shortly be referred to as z- and v-
components, respectively. The process of isolating the excitation

components itself is not considered in this contribution. There are,

however, cases in which the v-components are directly accessible,

especially if they are artificially introduced, e.g., [13, 15].

The decomposition in (2) allows the description of the problem

conditioning via the power ratio of the respective components, i.e.,

ηi = 10 log10

(

E{z2i (k)}

E{v2i (k)}

)

∀i (3)

which is defined similar to a signal-to-noise ratio. With ηi, we can
roughly classify the possible situations in system identification.

Nonunique (ηi → ∞): With strictly correlated excitation only,

the problem is mathematically singular and decorrelation must be

applied [13]. Note though that such strict linear dependency is rarely

encountered in practical applications.

Ill-conditioned (0 < ηi < ∞): Small v-components are in-

herently present in the system excitation or they are generated by a

decorrelation method applied to the nonunique case.

Well-conditioned (−∞ < ηi < 0): For low values of ηi the
problem conditioning improves. Measuring with uncorrelated probe

signals, i.e., ηi → −∞, renders the identification task rather trivial.

In this paper, we consider the ill-conditioned case only, since the

nonunique situation must be cast into an ill-conditioned problem by

decorrelation anyway, while the well-conditioned case is not very

challenging from a system identification perspective for ηi ≪ 0.

3. PROPOSED SOLUTION

3.1. From Conventional MISO System Identification to Sepa-

rate Processing of Excitation Components

Conventional approaches to MISO system identification aim to

mimic the structure of the reproduction setup illustrated in Fig. 1.
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Fig. 2. Proposed serial filter structure.

Therefore, a conventional structure employs P adaptive filters ĥi,k

to model the first L ≤ Lh coefficients of each AIR hi. The adapta-

tion process is driven by the observed microphone signal y(k) and
the known loudspeaker signals xi(k), i.e., the additive mixture of

z- and v-components. This procedure only results in satisfactory

performance for rather low values of ηi, i.e., a large amount of

decorrelation is required.

An early idea of a dedicated treatment of the z- and v-compo-

nents has been presented over a decade ago. In [21, 22], the authors

propose to amplify the v-components originating from a nonlinear

half-wave rectifier by introducing so-called enhanced input signal

vectors to improve the convergence of a modified version of the nor-

malized least-mean-square algorithm (NLMS).

Assuming that we can isolate the z- and v-components, how-

ever, enables us to go even further and abandon the conventional

paradigm of employing P adaptive filters for a P -channel system.

Instead, we consider the isolated components as individual input sig-

nals and propose extended filter structures to adapt twice the number

of physically available filters with individual purposes.

It is important to note that our processing approach operates

without predistortion if the excitation inherently contains sufficiently

strong v-components or it follows after a necessary decorrelation

stage to achieve better convergence at the same level of distortion.

Therefore, our approach is not meant as an alternative, but rather as

an addition to already existing decorrelation techniques.

3.2. Proposed Serial Filter Structure

The first filter structure we propose is a serial combination of two

P -channel adaptive filters as illustrated in Fig. 2. The first stage es-

timates filters ȟi,k of length L based on the z-components and the

microphone signal y(k) only. As the excitation of the first stage is

strictly correlated, the identification problem is singular and the fil-

ters ȟi,k will not be unique. Nonetheless, the adaptation algorithm

will minimize the output error ε(k) of this stage. The error signal

ε(k) only contains, in the ideal case, the observation noise n(k) and
those signal components of y(k) that cannot be modeled by zi(k)
since they originate from vi(k). This fact is exploited in the second

stage in which ε(k) acts as the desired signal and vi(k) are used as

input signals. The adaptive filters ĥi,k will converge to the true AIRs

since their excitation is uncorrelated. Unfortunately, the first stage

must be converged before the second stage can operate successfully.

3.3. Proposed Parallel Filter Structure

Our second filter structure that treats the input signal components

as separate system excitations is the parallel 2P -channel structure

shown in Fig. 3. The idea behind this structure is very similar to

the one of the serial structure. In fact, the parallel structure can be

derived from the serial structure by using e(k) instead of ε(k) to

adapt ȟi,k. This eliminates the two-stage convergence behavior of

the serial structure, but requires the adaptive algorithm to adapt twice

as many channels from a single microphone signal observation. A

414



-- Σ

v1(k) . . . vP (k)

z1(k) . . . zP (k)

y(k)

e(k)
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Fig. 3. Proposed parallel filter structure.

similar structure has been proposed in [23] for SAEC applications

based on a modified nonlinear half-wave rectifier.

Although serial and parallel filter structures adapt 2P filters in

total, only filters ĥi,k are considered as estimates of the true AIRs

hi, whereas ȟi,k are internal quantities that are discarded eventually.

4. THEORETICAL ANALYSIS

4.1. Gradient Descent Review for Conventional Identification

The extended filter structures introduced in Sec. 3 can basically be

implemented with any gradient-descent-based algorithm. As a refer-

ence, we first illustrate how an ideal gradient descent approach with

known correlation quantities operates in the conventional P -channel

filter structure without considering observation noise.

System identification based on the gradient descent approach es-

timates the unknown system responses recursively by correcting the

current estimate with the gradient of a cost function J(ĥk) [24], i.e.,

ĥk+1 = ĥk −
1

2
βk∇ĥk

J(ĥk) , (4)

where ĥk is a stacked version of the individual estimates ĥi,k and

βk is a scalar time-variant step-size parameter. For the conventional

approach the estimation error is e(k) = d(k) − ĥ
T
k xk, where xk

is defined analogously to x
′

k but only the most recent L samples

per channel are considered. The mean square of e(k) is our cost

function, which can, along with its gradient, be expressed as [24]

J(ĥk) = E{e2(k)}

= σ2
d − 2ĥT

k rzd − 2ĥT
k rvd + ĥ

T
k Rzzĥk + ĥ

T
k Rvvĥk ,

∇
ĥk

J(ĥk) = −2rzd − 2rvd + 2Rzzĥk + 2Rvvĥk . (5)

Here, rzd = E{zkd(k)}, rvd = E{vkd(k)}, Rzz = E{zkz
T
k },

and Rvv = E{vkv
T
k } are correlation vectors and matrices with

xk = zk + vk in accordance with (2) and σ2
d = E{d2(k)}.

Forming a vector h0 by considering the firstL coefficients of the

true AIRs, we can define a coefficient error∆ĥk = h0−ĥk that will

vanish once the system is identified correctly. For sufficiently large

L we can approximate d(k) ≈ x
T
k h0 = z

T
k h0 + v

T
k h0, thus rzd =

E{zkd(k)} ≈ E{zkz
T
k h0 + zkv

T
k h0} = Rzzh0 and similarly

rvd ≈ Rvvh0. Using these approximations along with (5), we can

turn (4) into a difference equation for ∆ĥk, i.e.,

∆ĥk+1 = (I− βk(Rzz +Rvv))∆ĥk . (6)

This difference equation will only converge to zero coefficient error

safely if all eigenvalues λ of βk(Rzz+Rvv) well satisfy 0 < λ < 2
[24]. Since Rzz is ill-conditioned, i.e., it has a large eigenvalue

spread due to the mutual correlation of the z-components, this cri-

terion cannot be met simply by adjusting βk. Even though Rvv is

added to Rzz , the conditioning will only improve slightly because

E{z2i (k)} ≫ E{v2i (k)}. The goal of our extended structures must

therefore be to eliminate Rzz from the update equation for ∆ĥk.

4.2. Gradient Descent for the Serial Filter Structure

For the serial structure, the estimation error of the first stage is

ε(k) = d(k) − ȟ
T
k zk according to Fig. 2 with σ2

ε = E{ε2(k)}. In
our analysis, we consider the second stage only, assuming that the

first stage successfully minimizes ε(k) but not the coefficient error

∆ȟk = h0 − ȟk. With the estimation error e(k) = ε(k) − ĥ
T
k vk

of the second stage, we can write its cost function as

J(ĥk) = E{e2(k)}

= σ2
ε − 2ȟT

k rzd − 2ĥT
k rvd + ȟ

T
k Rzzȟk + ĥ

T
k Rvvĥk .

As the second stage can only adapt filters ĥk, the gradient is

∇
ĥk

J(ĥk) = −2rvd + 2Rvvĥk . (7)

With (4), (7), and by approximating rvd ≈ Rvvh0 as before, we can

derive the difference equation for the coefficient error,

∆ĥk+1 = (I− βkRvv)∆ĥk , (8)

which will eventually converge to zero for an appropriate step-size

βk, since the eigenvalue spread of Rvv is low.

4.3. Gradient Descent for the Parallel Filter Structure

Introducing composite vectors h̃k = [ȟT
k ĥ

T
k ]

T and x̃k = [zTk v
T
k ]

T

of length 2PL, the error signal of the parallel structure becomes

e(k) = d(k) − h̃
T
k x̃k (cf. Fig. 3). Applying the gradient descent

approach to the filter vector h̃k yields

h̃k+1 = h̃k −
1

2
βk∇h̃k

J(h̃k) . (9)

The cost function is now a function of the composite vector h̃k in-

stead of just ĥk and can be expressed, along with its gradient, as

J(h̃k) = E{e2(k)}

= σ2
d − 2h̃T

k rx̃d + h̃
T
k Rx̃x̃h̃k ,

∇
h̃k

J(h̃k) = −2rx̃d + 2Rx̃x̃h̃k (10)

with rx̃d = [rzd
T
rvd

T ]T and Rx̃x̃ =

(

Rzz 0

0 Rvv

)

.

By combining (9) and (10), utilizing the same approximation as

in the conventional case, i.e., rx̃d ≈ [(Rzzh0)
T (Rvvh0)

T ]T , and
exploiting the block-diagonal structure of Rx̃x̃, we get two decou-

pled difference equations for the upper and lower half of h̃k, i.e.,

∆ȟk+1 = (I− βkRzz)∆ȟk , (11)

∆ĥk+1 = (I− βkRvv)∆ĥk . (12)

The difference equation for∆ĥk in (12) is identical to the one in (8)

and will again converge to zero for an appropriate step-size βk.

5. EXPERIMENTAL ANALYSIS

5.1. Performance of the Proposed Structures

Since the theoretical analysis in Sec. 4 is based on known correla-

tion matrices and does not take noise or the imperfectness of practi-

cal algorithms into account, we will support the effectiveness of the

proposed filter structures by simulations with data-driven gradient-

descent type algorithms. We set up a virtual room of size 4m×5m×
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Fig. 4. Convergence of conventional and proposed filter structures

for NLMS (dashed) and MCSSFDAF (solid).

3m with a reverberation time T60 = 0.25 s and place P = 5 loud-

speakers according to ITU-R BS.775 inside the room. At the center,

we place a microphone and calculate P AIRs of length Lh = 4096
at 48 kHz using the image source method [25]. All z-components

of the loudspeaker signals are generated by filtering a single white

Gaussian test signal using filters of length 4096 that represent the

AIRs of a different room. The v-components are created as indepen-

dent white Gaussian noises at ηi = 20 dB and both components are

added to form the loudspeaker signals according to (2). The micro-

phone signal is finally obtained by using (1) with white observation

noise n(k) to yield a microphone SNR of 30 dB.
In a first experiment, we compare the performance of the con-

ventional, serial, and parallel filter structures. For system identifi-

cation, we use a simple multichannel NLMS algorithm [24] with

normalized step-size µ = 0.95 (conventional and parallel case) or

µ = 0.2 (serial case), and the multichannel state-space frequency

domain adaptive filter (MCSSFDAF) with transition coefficientA =
0.9997, frame-size 4096, and frame-shift 2048, which can be under-
stood as a recent gradient descent algorithm with optimal step-size

[26]. Both algorithms estimate filters with L = 2048 coefficients.

The results of this experiment are shown in Fig. 4 in terms of

misalignment D(k) = 10 log10(‖∆ĥk‖
2/ ‖h0‖

2). They clearly

show that ηi = 20 dB is not suitable for the conventional approach

to converge to a satisfactory level for both algorithms, i.e., more

decorrelation would be required. The proposed structures, how-

ever, achieve very good identification performance implemented

with MCSSFDAF. The NLMS curves also converge better for the

proposed structures than for conventional identification, but NLMS

still faces problems: In the serial structure, the first stage must have

converged before the second one can operate correctly. As a result,

the second stage even diverges during the first 5 s for NLMS. In the

parallel structure, NLMS identification is just too slow due to the

normalization across all components, which is more sophisticatedly

handled as a channel-wise normalization by MCSSFDAF.

5.2. Robustness of the Proposed Structures

We run two more experiments with the same setup in order to eval-

uate the robustness of the extended filter structures to practical con-

ditions. Since the NLMS identification has turned out to be less

effective than MCSSFDAF, we proceed with the latter only.

In order to evaluate the reconvergence behavior of the proposed

approaches, we introduce a rapid change of the true AIRs hi after

30 s. The results for this experiment are depicted in Fig. 5 and show

a reconvergence rate similar to the initial convergence for both of the

proposed structures. The results support the idea that the proposed

schemes could be used to track changes in the AIRs during audio

reproduction processing.
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Fig. 5. Reconvergence of MCSSFDAF filter structures with a sudden

change of the true MISO system after 30 s.

In the final experiment, we introduce burst noise into the mi-

crophone signal. Three times, the SNR at the microphone will de-

crease to −25 dB simulating, e.g., an independent talker within the

reproduction room. The identification performance shown in Fig. 6

reveals that both filter structures behave very robust during the noise

bursts. For the serial structure, we observe a slight delay before the

effect becomes evident in the second stage, since the bursts affect the

first stage first. The results demonstrate that noise robustness known

from MCSSFDAF is preserved in the proposed filter structures.

6. CONCLUSION AND RELATION TO PRIORWORKS

In this paper, we proposed a novel processing scheme for online

MISO acoustic system identification with correlated input signals

as they are encountered in numerous audio reproduction applica-

tions, such as room equalization [2, 3, 4] or crosstalk cancellation

[7, 9, 8, 10]. Unlike prior works on MISO system identification

in the context of SAEC, we did not present a new decorrelation

method. Instead, we introduced extended filter structures that treat

the existing correlated and uncorrelated excitation components as

separate input signals. The uncorrelated components required in

this approach can be naturally contained in the excitation or artifi-

cially introduced by a predistortion technique, e.g., [15, 18, 20]. We

proved our processing scheme in an idealized general gradient de-

scent framework and demonstrated its effectiveness and robustness

in experiments with classical and state-of-the-art system identifica-

tion algorithms. Once a suitable separation method for the excitation

components has been found, the proposed scheme could be used to

reduce the amount of predistortion required, or, to allow for system

identification without decorrelation if sufficiently uncorrelated com-

ponents are already present in the original input signals.
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Fig. 6. Robustness of MCSSFDAF filter structures with 1 s noise

bursts at −25 dB SNR in the microphone signal y(k).
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