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ABSTRACT

In the field of auditory masking threshold predictions an op-
timal method for buffering a continuous, ecologically valid
programme combination into discrete temporal windows has
yet to be determined. An investigation was carried out into the
use of a variety of temporal window durations, shapes, and
steps, in order to discern the resultant effect upon the accu-
racy of various masking threshold prediction models. Selec-
tion of inappropriate temporal windows can triple the predic-
tion error in some cases. Overlapping windows were found to
produce the lowest errors provided that the predictions were
smoothed appropriately. The optimal window shape varied
across the tested models. The most accurate variant of each
model resulted in root mean squared errors of 2.3, 3.4, and
4.2 dB.

Index Terms— Masking, Threshold, Temporal, Predic-
tion

1. INTRODUCTION

Ever since Fletcher’s seminal work on auditory patterns [1]
there has been steady progress towards the goal of predicting
the occurence of the phenomenon known as auditory mask-
ing. Fletcher noticed that the human auditory system behaves
like a bank of bandpass filters wherein the audibility of stimuli
are constrained. Further advancements in this field included
the development of gammatone filters [2] and excitation pat-
terns [3]. Today, the most advanced auditory masking models
use a chain of processes modelling the behaviour of the phys-
ical and neuronal systems (as in [4], [5]).

Such models are usually tested using simple, well de-
fined stimuli (e.g. tone-in-noise) rather than ecologically
valid stimuli (e.g. music and speech), in order to control
for confounding variables when evaluating the prediction of
distinct masking phenomena. When predicting the audibility
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of ecologically valid stimuli, the duration is often unknown.
Determining the audibility of stimuli cannot, therefore, be
achieved using a single batch process but must split the input
into separate temporal windows. This raises the question:
what kind of temporal window should be used in a mask-
ing threshold prediction model? A temporal window can
be described using three parameters: duration, shape, and
step (through time). The literature on human audition was
consulted as a starting point, on the assumption that human
listeners perform a similar function.

The human auditory system generally does not respond to
signals briefer than approximately 2-20 ms [6, 7, 8, 9], which
can be taken as a lower bound for the duration of the tem-
poral window. In [10] (exponential) auditory temporal win-
dows were suggested in which most of the energy was con-
tained within approximately 100 ms, although it was noted
that longer durations may be more appropriate for continuous
signals. Results from electroencephalography studies indi-
cate that temporal integration within the auditory cortex oc-
curs over a period on the order of several hundred millisec-
onds ([11],[12]). Therefore temporal windows from 20 to a
few hundred milliseconds are of most interest.

As for the shape of the temporal windows, it was demon-
strated in [8] that human temporal windows are likely to
have gradual skirts and in [10] the psychophysical data was
mapped to an asymmetric exponential function. Hann win-
dows have also been used in masking models ([4]).

Finally the step size of the temporal window was consid-
ered. Since auditory perception is free to respond to drastic
changes in stimuli after only a few milliseconds, it appears
that the temporal window ‘steps’ through time at a rate which
implies significant overlap of windows. It may be reason-
able to suggest than an optimal step size would therefore be
equivalent to only a few milliseconds, yet it is not clear if
this will be the case for ecologically valid stimuli. It is ad-
ditionally worth investigating how detrimental to prediction
accuracy the use of larger steps may be.
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Although some broad answers to the previous questions
are known for human audition, it should not be assumed that
the optimal temporal windows for masking threshold predic-
tion models must be identical to these, since such models do
not perfectly replicate the human auditory system. Thus, in
order to find trends among the parameters for temporal win-
dows an experiment is described in this paper to predict mask-
ing thresholds of ecologically valid time-varying stimuli.

2. COLLECTION OF MASKING THRESHOLD DATA

In order to evaluate the performance of masking threshold
prediction models it is necessary to compare the predictions
with known masking data. A masking threshold experiment
was therefore conducted. Ten listeners reporting no hearing
problems, aged between 21 and 38 years, and with a range of
musical proficiency, participated in the experiment.

2.1. Methodology and equipment

The subjects were seated near the centre of a listening room
meeting the specifications described in [13], with one target
loudspeaker (Genelec 8020A) positioned 1.85 m directly in
front and at a height of 0.78 m, and one interferer loudspeaker
(Genelec 1032) positioned 2.2 m directly in front at a height
of 1.04 m. This arrangement allowed both loudspeakers to be
approximately head height without causing significant occlu-
sion of either stimulus.

The subjects used an unmarked rotary fader to interact
with a computer. The computer simultaneously replayed one
audio programme (the target) via the target loudspeaker, and
a different audio programme (the interferer) via the interferer
loudspeaker. The subjects were instructed to adjust the level
of the interferer until it was rendered ‘just inaudible’.

2.2. Stimuli

Three items of target programme material and three items of
interferer programme material were used in this experiment.
All stimuli were 10 second excerpts, looped indefinitely. The
programmes were selected to cover a range of types and gen-
res, and included excerpts of classical music (Brahms’s Hun-
garian Dance No.18), pop music (The Killers’ On Top), and
sports commentary (from a football match), for the targets and
excerpts of classical music (Mahler’s Symphony No. 5 Mov.
4), pop music (The Bravery’s Give in), and male speech (from
the BBC Radio 4 show ‘Points of View’) for the interferers.

The target programmes were reproduced with a level of 76
dB LAeq (20 s time constant) measured at the listening posi-
tion. The interferers were set to randomly selected starting
levels between 70-76 dB LAeq in order to prevent listeners
from simply repeating the previous fader rotation.

The experiment design was full factorial with two repeti-
tions per trial, thus there were 18 trials per listener.

Finally, the stimuli were recorded in the listening room
using a Cortex MK2 head and torso simulator, in order to pro-
duce the input stimuli for the masking threshold models.

3. MODEL STRUCTURE

Figure 1 shows an overview of the test model structure used
to investigate combinations of temporal window parameters.

Temporal Windowing

Masking Threshold Model

Smoothing Filter and Selection

Linear Translation

Interferer
Signal

Target
Signal

Masking Threshold
Prediction

Fig. 1. Overview of the test model.

3.1. Temporal windowing

The temporal window durations tested were 100 ms, 200 ms,
300 ms, and 400 ms. The steps (distance between onset of ad-
jacent temporal windows) tested were also 100 ms, 200 ms,
300 ms, and 400 ms, giving a maximum tested overlap of 75%
(400 ms duration with 100 ms step). While it is possible that
shorter steps or durations would improve prediction accuracy
further, the processing time required to make such predictions
quickly became impractically long. Four shapes were consid-
ered: instantaneous onset and offset (rectangular window), 50
ms raised cosine onset and identical offset (Hann window), 50
ms exponential onset with identical offset (Exp), and an expo-
nential onset equal to 3/4 of the duration, with the remaining
1/4 an exponential offset (ExpSlope). This final, assymetrical
window was selected to approximate the phenomena of for-
ward and backward masking. The parameters were tested in
all combinations except where the step exceeded the duration.

3.2. Masking threshold prediction

Three masking threshold models were implemented and
tested: CASP (based on the model described in [4]), LoudM
and LoudZ (based on the loudness model described in [5] and
[14] respectively).
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For a detailed description of the CASP model see [4]. In
brief, the CASP model passes a known target and interferer
through a series of processes which mimic the response of
the human auditory system. These include a dual resonance
non-linear filterbank (to model the frequency selectivity of
the cochlea) and an adaptation loop (which functions simi-
larly to temporal integration), and finally result in an ‘internal
representation’ of the signal. Cross correlations are calcu-
lated between the internal representation of this mixture and
a template mixture in which the signal is known to be audi-
ble. This is compared with a cross correlation between the
internal representations of the interferer alone and the tem-
plate mixture, which allows for the prediction of a probability
of detecting the interferer. In order to adapt the model for
the task considered in this paper, it was necessary to obtain
masking thresholds, rather than a probability of detection. To
do this a pre-specified probability of detection (in this case
50%) was selected at which the interferer was considered ‘un-
masked’ and the corresponding interferer level was identified
by running the model repeatedly with the interferer level ad-
justments prior to each run. A simple binary search algorithm
was implemented to reduce the processing time required to
identify the interferer level to within 0.001 dB.

LoudM and LoudZ , were adapted such that for each tem-
poral window the maximum long-term loudness value (in
LoudM ) and the instantaneous loudness level (in LoudZ)
were calculated for the target and interferer independently.
The difference in loudness (D) between target and interferer
was used to estimate the probability of detection (P) by map-
ping to a logistic function of the form

P =
1

1 + e−(1+0.1D)
. (1)

The stimulus was assumed to be unmasked where P>0.5.

3.3. Linear translation

It was considered possible that an optimal calibration (i.e.
producing the most accurate predictions) may exist for each
masking threshold model and every combination of tempo-
ral window parameters under test. To find this array of op-
timal calibrations prior to testing would require an extreme
processing cost, thus a post-calibration strategy was adopted.
This involved using a gradient descent function to find the lin-
ear transform which produced the most accurate predictions
for every model and window combination. While it might be
possible to obtain more accurate masking threshold predic-
tions by finding the optimal calibration of the masking thresh-
old prediction model, it seems likely that the gains would be
small.

3.4. Smoothing filter and selection

In order to produce a single masking threshold prediction
from the set of predictions obtained (one per window) the

lowest threshold was selected as the final prediction, on the
assumption that listeners determine the masking threshold by
attending to the moment in which the interferer is most easily
audible. Additional tests were conducted in which, prior to
selection, a moving average filter was applied to the set of
predictions. Each filter averaged every masking threshold
prediction with an equal number of adjacent predictions in
both directions. Every odd filter width from 1 (no smooth-
ing) to 23 predictions was tested. To avoid problems of end
effects, the smoothing filter was set to ‘wrap around’ the test
file such that smoothing applied to predictions at one end
were averaged with predictions made at the other.

4. ANALYSIS

For each model setup a root mean squared error (RMSEσ) be-
tween reported and predicted masking thresholds (across all
listening scenarios) was calculated as a measure of accuracy.
Additionally the mean error for each model, trained on every
combination of 8 of the 9 listening scenarios, was taken as a
cross validation measure of accuracy (RMSECV ). The dif-
ference between RMSECV and RMSEσ was used as an indi-
cator of robustness to extrapolation (RMSEδ), where a lower
RMSEδ indicates a more robust model. Epsilon insensitive
RMSEs (RMSE*) — where errors are the difference between
the prediction and the closest edge of the 95% confidence in-
terval of the mean of the human masking data, or 0 for predic-
tions which fall within the 95% confidence interval — were
also calculated, which describe accuracy ‘after’ listener error.

4.1. Effect of duration and step (overlap)

A trend was found across all models and window shapes in
which greater durations for a fixed step size (i.e. greater over-
lap) required wider smoothing filters to minimise prediction
error (see fig. 2). This may be because as windows overlap
the data is processed repeatedly, thus a greater number of win-
dows should be averaged across in order to describe the same
section of the stimuli. Beyond the optimal smoothing filter
width (for a fixed overlap) the accuracy decreased as the fil-
ter widened, because the analysis tended towards an average
masking threshold prediction across the whole stimuli.

The optimum width of smoothing filter was model depen-
dent. LoudZ had an optimum smoothing filter width at 11
predictions (for the greatest overlap tested), whereas LoudM
and CASP had optima at 3-5 predictions (depending on over-
lap). The LoudZ performance may be due to its large pre-
diction errors when the interferer was speech. In general, for
speech interferers more accurate predictions can be made us-
ing the widest smoothing filters (i.e. the long-term average
loudness ratio between the music and speech), and for mu-
sic interferers more accurate predictions can be made using
very narrow filters (i.e. the short-term average loudness ratio
was a better predictor of audibility because the listener could
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listen ‘in the gaps’ of the speech). For LoudZ relatively low
average RMSEσs were obtained smoothing over 9-13 predic-
tions, since this was a compromise between the narrow filters
required for music interferers, and the wide filters required to
reduce the error for speech interferers.

It should be noted that the most accurate prediction us-
ing LoudZ was produced with minimal smoothing (3 predic-
tions) and no overlap (see section 4.3), with those predictions
made using 100 ms step, 400 ms duration, and smoothing
width 11 performing marginally worse. More generally, it
was found that over the range of conditions tested both LoudZ
and LoudM produced very similar RMSEσs in the best cases
whether using no overlap and no smoothing or using signif-
icant overlap with optimal smoothing. CASP, however, pro-
duced RMSEσs 0.6 dB lower when using the ideal overlap
and smoothing, than the most accurate prediction made with-
out overlap (which was made using 300 ms step and 300 ms
duration). This is possibly because the cross correlation ap-
proach employed by CASP may be more susceptible to the
presence of transients (which larger overlap reveals) than the
loudness ratio approach employed by LoudZ and LoudM .
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Fig. 2. RMSEσ calculated across target-interferer combina-
tions based on width of smoothing filter and window overlap.
Values shown are averaged across step and duration condi-
tions with identical overlap, and across window shapes.

4.2. Effect of window shape

For all models, durations and steps, the window shape pro-
duced only small differences (usually less than 0.3 dB). It is
likely that this is because over a relatively long duration (i.e.

10 second programme) a sufficient number of windows will
be examined that other forces, such as selection strategy and
smoothing of predictions, will have a larger effect than the
weighting of data within each window.

For CASP the rectangular window usually produced the
most accurate predictions. For LoudZ and LoudM there did
not seem to be a consistent best shape to choose. For every
combination of step and duration the maximum difference in
error between window shapes was calculated for each model.
The average of these maximum differences in prediction ac-
curacy were 0.14, 0.19, and 0.43 dB for CASP, LoudZ , and
LoudM respectively.

4.3. Prediction accuracy

The most accurate predictions in this set of tests were made
by CASP, with the best case having an RMSEσ of 2.3 dB and
an RMSE* of 0.8 dB (using a rectangular 400 ms window
stepping by 100 ms smoothed over 5 predictions). A range
of similar results were produced using other window shapes,
and using 300 ms duration windows. The RMSEδ followed
a similar trend to the RMSEσ , with the most robust models
also being the most accurate (RMSEδ < 0.2 dB) and the least
accurate models having the greatest RMSEδ (0.8− 1.4 dB).

The most accurate predictions produced using the LoudZ
model had an RMSEσ of 3.4 dB and an RMSE* of 2.1 dB,
and were made using a 400 ms ExpSlope window stepping
by 400 ms smoothed over 3 predictions. As with CASP, the
RMSEδ was lowest for those cases which were most accurate
(< 0.2 dB) and the less accurate models had greatest RMSEδs
(up to 0.7 dB).

For LoudM the most accurate predictions resulted in an
RMSEσ of 4.2 dB and an RMSE* of 2.9 dB, and were made
using a 400 ms Hann window stepping by 200 ms, smoothed
over 3 predictions.

5. CONCLUSION

CASP produced the most accurate predictions with a RMSE
of 2.3 dB in the best case (compared to 3.4 dB and 4.2 dB for
LoudZ and LoudM respectively).

Shorter steps and longer durations (i.e. greater over-
lap) generally produced the most accurate predictions, pro-
vided that the optimal width of smoothing filter was selected.
Conversely, low overlap predictions had low error when no
smoothing was applied. For CASP the use of overlap and
smoothing reduced RMSE by 0.6 dB compared to the best
prediction made without, whereas the effect was very small
for LoudZ and LoudM .

Window shape had a small effect (usually less than 0.3
dB), and the optimal selection was specific to each model.
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