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ABSTRACT

The performance of conventional acoustic source localization and
tracking system reduces significantly when reverberation, noise, and
acoustic interference are present. In this paper, a robust speaker
tracking algorithm for an enclosed environment in the presence of
interference and noise is proposed. We exploit the harmonic struc-
ture which is a distinctive feature in speech to enhance the robustness
against acoustic interference. In order to extract the speech harmonic
information, a beamformer is employed to enhance the signal from a
prior estimated source location. A new particle weight update is then
computed based on the steered response power function given the es-
timated speech harmonic information. Simulation results show that
the proposed method achieves robustness in localization and track-
ing of a speech source in the presence of interference, noise and
reverberation.

Index Terms— Acoustic localization and tracking, particle fil-
ter, speech harmonics, microphone array

1. INTRODUCTION

Acoustic source localization and tracking (ASLT) using a micro-
phone array has been an active research area for applications in-
cluding teleconferencing, automatic camera steering and surveil-
lance [1]. However, room reverberation, background noise, and
sound interference are some of the challenges that need to be ad-
dressed for realistic applications. Therefore, there is a high demand
for developing robust algorithms that operate well under an adverse
environment.

Conventional localization methods can be classified into single-
step or dual-step approaches. In single-step approaches, the source
location is directly estimated from the received signal by scanning
across all possible source locations [2–4]. In dual-step approaches,
the time-difference-of-arrivals (TDOAs) are first estimated and sub-
sequently used to locate the source given the microphone array ge-
ometry [5–7]. However, these approaches estimate the source loca-
tion by assuming it is independent across each time frame.

More recently, state-space approaches which exploit the fact that
the measurements of the source signal retain temporal consistency
across successive frames have been proposed [8–14], leading to a
tracking scenario. The particle filter (PF) [15] was introduced in
acoustic source tracking to achieve robustness against reverberation
and noise [8,9]. A voice activity detection module was subsequently
integrated into the ASLT framework to deal with silent periods in
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non-stationary speech [10]. In addition, a track-before-detect frame-
work that is capable of reducing the computation load for a large
number of particles has been presented in [11]. The problem of
tracking for multi-targets and time-varying number of targets has
also been investigated in [11, 12].

Although significant progress has been made, the problem of
speech source tracking in the presence of interference remains an
open problem. Existing tracking methods employ the steered re-
sponse power beamformer with phase-transform (SRP-PHAT) as a
measurement likelihood for particle weight update [9–12]. However,
since these approaches are non-discriminative in nature, the presence
of interference will result in consistently high likelihood at the loca-
tion(s) of the interferer(s) which, in turn, causes particles to converge
at the wrong location away from the speech source.

In this paper, a speech harmonicity based ASLT algorithm is
proposed to deal with the effect of interference. Although the authors
of [16, 17] proposed localization methods by jointly estimating the
pitch frequency and source position, their primary aim is not to re-
ject interference signals. In addition, conventional tracking methods
do not consider any source spectrum feature [9–12]. Our proposed
method, on the other hand, incorporates distinctive speech harmon-
ics and a PF framework to achieve robust speech source tracking
in the presence of interference. First, a beamformer is employed
to enhance the signal from a prior estimated source location to ex-
tract the speech harmonic information. A new SRP function is then
constructed by considering the fact that speech energy is concen-
trated on the harmonic bands, while the interference energy may be
distributed over different frequency regions. Finally, a new particle
weight update scheme is derived based on the new SRP function to
achieve speech-sensitive source tracking. Simulations are conducted
to compare the tracking performance between the proposed and the
conventional method in the presence of interference, noise and re-
verberation.

2. THE PROPOSED FRAMEWORK

2.1. Source dynamic model

The bootstrap PF is commonly used in the ASLT due to its low
computational complexity [18]. The source state αk is defined as
αk = [xk, yk, ẋk, ẏk]T at time instant k, where xk and yk corre-
spond to the source position while ẋk and ẏk are the source velocity
in x and y direction, respectively. We also define the observation
variable zk = [x̂k, ŷk]T which contains the source location esti-
mate. In the ASLT framework, the source dynamic is described us-
ing a first-order Markov process given by

αk = g(αk−1,uk), (1)
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where g(·) denotes the state-transition process and uk denotes the
process noise. Similar to [8–11, 14], we employ the Langevin pro-
cess which had been proposed as a source-dynamic model for simu-
lating a realistic human motion. The state-transition g(·) in (1) can
be represented by

αk =

1 0 aT 0
0 1 0 aT
0 0 a 0
0 0 0 a

αk−1 +

bT 0
0 bT
b 0
0 b

uk, (2)

where uk ∼ N (µ,Σ) is the noise variable, T is the time interval
between consecutive frames, µ = [0, 0]T and Σ = I2×2 correspond
to the mean vector and covariance matrix, respectively. The param-
eters a and b are defined as

a = exp(−βT ), (3a)

b = v̄
√

1− a2, (3b)

where v̄ is the steady-state velocity and β is the rate constant. In this
paper, we have used, similar to [10], v̄ = 0.8 m/s, β = 10 Hz.

2.2. Prior Prediction

In the ASLT framework, particles are propagated according to the
source-dynamic model before being weighted by the particle likeli-
hood. Existing approaches compute the particle weights by employ-
ing a pseudo-likelihood that has been derived from the SRP-PHAT
measurements [9–12]. While these techniques achieve good local-
ization and tracking performance, their performance may reduce in
the presence of interference. This is due to the inability of SRP-
PHAT to discriminate between the speech source and the acoustic
interference in general. It implies that any acoustic interference will
result in a dominant peak occurring at the interferer’s position, and
the particles are likely to propagate towards that location away from
the speech source. The performance of these algorithms reduces sig-
nificantly in low signal-to-interference ratio (SIR), resulting in the
ASLT losing track of the speech source.

To mitigate the degradation in performance, we exploit speech
features such that the likelihood measurement is predominantly
weighted by the speech signal as opposed to the interferers. We
propose to first estimate the prior source position using (1) such that
this prior state estimate is given by

α̂−
k = g(α̂+

k−1,uk), (4)

where α̂+
k−1 is the posterior state estimate at time instant k− 1. The

prior source location estimate

̂̀−
k = [x̂−k , ŷ

−
k ]T , (5)

corresponds to the first two elements in α̂−
k . This prior estimate is

based only on the knowledge of the source motion. The feature-
directed measurements, as will be described in subsequent subsec-
tions, will further refine the state estimate.

2.3. Feature Extraction

Various techniques can be employed to enhance the signal after a
prior source location has been estimated. We consider the delay-
and-sum beamformer [19] due to its simplicity although other forms
of beamformer such as presented in [20, 21] can be used to enhance
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Fig. 1. Spectrogram and selected harmonic bands indicated in blue lines.
(a) Clean speech. (b) Power-drill interference. (c) Reference microphone
received signal and its selected harmonic bands (in blue). (d) Beamformer
enhanced signal and its selected harmonic bands (in blue).

the speech signal. The delay-and-sum beamformer output for the
prior estimated source location ̂̀−k , is given by

S(ω, ̂̀−k ) =

M∑
m=1

Φ
(
Dm(̂̀−k )

)
Fm(ω)eωDm(̂̀−k )/c, (6)

where m is the microphone index, M is the number of micro-
phones, Fm(ω) is the frequency-domain received signal from the
mth microphone, ω is the angular frequency, c is the speed of
sound, Dm(̂̀−k ) = ‖̂̀−k − `m‖2 is the distance from prior esti-
mated source position to the mth microphone, and Φ(·) is a mono-
tonic function that weighs the mth microphone signal according
to the source-sensor distance. In our simulations, we found that
Φ
(
Dm(̂̀−k )

)
= 1/Dm(̂̀−k ) performs well since it emphasizes the

signal from the microphone that is closer to the source.
It is well-known that the speech spectrum possesses a harmonic

structure [22] (see Fig. 1 (a)), where the harmonics correspond to
multiple integers of a pitch frequency. We assume, in this work, that
the interferers either do not share the same harmonic bands as the
speech spectrum (due to differences in pitch frequency) or the spec-
trum of the interferer(s) do not exhibit any harmonicity. Figure 1 (b)
shows the spectrum of the power drill extracted from the NOISEX-
92 database [23]. We note from this spectrum that although there
are dominant energies at 400 and 1500 Hz, no harmonic structure is
present.

The purpose of the proposed method is to discriminate these
spectral components and extract harmonic bands corresponding to
the human speech for particle likelihood computation since these re-
gions provide a high SIR. In general, the spectrum corresponding to
the signal received from one channel is often distorted, especially for
the case where the interferer is close to the microphone as shown in
Fig. 1 (c). Extraction of speech harmonics is therefore challenging.
In the proposed method, the signal is first enhanced by the proposed
beamforming technique using (6), and the enhanced spectrum, as
shown in Fig. 1 (d), will be used for speech feature extraction.

To extract the speech harmonics from a noisy spectrum, we
employ the multi-band excitation (MBE) fit method [24, 25]. This
model defines a voiced frame in the frequency domain as a product
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Fig. 2. MBE fitting result. (a) Clean speech and MBE fit. (b) Beamformer
output, MBE fit and G(ω) in the presence of a power drill signal.

of excitation spectrumE(ω, ω0) and spectrum envelopeH(ω) given
by [24]

Sspch(ω) = H(ω)E(ω, ω0), (7a)

E(ω, ω0) =

Q∑
q=1

Ψ(ω − qω0), (7b)

where q is the harmonic index, Q is the number of harmonics, ω0 is
the pitch frequency, and Ψ(ω) is the Fourier transform of the Ham-
ming window. For a distorted speech signal, the parameters can be
estimated by minimizing the fitting error summed over all the har-
monic bands, i.e.,

ε(ω0) =
∑
q

εq(ω0), (8)

where the fitting error for each harmonic band εq(ω0) is given by

εq(ω0) =
1

2π

∫ bq

aq

|S(ω, ̂̀−k )−HqE(ω, ω0)|2dω. (9)

Here, S(ω, ̂̀−k ) has been defined in (6), H(ω) from (7a), is decou-
pled into several complex amplitude Hq for each harmonic band q,
and the interval [aq, bq] is the frequency band centered on the qth
harmonic, where aq = (q − 0.5)ω0 and bq = (q + 0.5)ω0.

The complex amplitude for each harmonic band Hq can be ob-
tained by considering the derivative of (9) to be zero giving

Hq =

∫ bq
aq
S(ω, ̂̀−k )E∗(ω, ω0)dω∫ bq
aq
|E(ω, ω0)|2dω

. (10)

Therefore, feature extraction is performed using the following steps:
each fitting error εq(ω0) is evaluated using the optimal value of Hq
obtained in (10). The error function in (8) is then computed with re-
spect to all pitch frequencies ω0 of interest. Finally, the global mini-
mum of ε(ω0) is determined and the corresponding ω0 is selected as
the estimated ω̂0.

2.4. Feature-directed Particle Weight Update

To obtain the feature-directed particle weight update, it is important
to determine the most reliable harmonic bands and select those har-
monic bands for the computation of the likelihood. Two criterions
are proposed to measure the reliability of the harmonic bands: (1)

Table 1. Summary of the proposed algorithm.

At time k−1, given that a set of particles {α(n)
k−1, w

(n)
k−1}

Ns
n=1 is a

discrete representation of posterior p(αk−1|zk−1), the posterior
state estimate is α̂+

k−1 =
∑Ns
n=1 w

(n)
k−1α

(n)
k−1.

For the kth frame:

1. Prior prediction: Propagate the state estimate through (4)
to obtain prior estimate of the current state α̂−

k .

2. Feature extraction: Apply (5) (6) to enhance the signal
from ̂̀−k , and extract speech features using (8)-(10).

3. Particles propagation: Propagate each particle through the
source dynamic model (1), α(n)

k = g(α
(n)
k−1,uk).

4. Posterior weights update: Obtain the feature directed par-
ticle likelihood using (11)-(15) and each particle is then
assigned a weight according to its likelihood w̃

(n)
k =

w
(n)
k−1p(zk|α

(n)
k ), followed by normalization w

(n)
k =

w̃
(n)
k (

∑N
i=1 w̃

(i)
k )−1. The posterior state estimate is

α̂+
k =

∑Ns
n=1 w

(n)
k α

(n)
k .

5. Resampling: Resample the particles if the effective sample
size is below a threshold, Neff < Nthr, where Neff =
(
∑N
n=1(w

(n)
k )2)−1.

the normalized fitting error and (2) the normalized harmonic energy.
The normalized fitting error [25],

εq =
εq(ω̂0)

1
2π

∫ bq
aq
|S(ω, ̂̀−k )|2dω

(11)

is defined, for each harmonic, as the effectiveness of a given fre-
quency band to be fitted into the speech harmonic model. The nor-
malized harmonic energy, on the other hand, is defined by the ratio
of energy distributed on that harmonic over the total energy, i.e.,

Pq =

∫ bq
aq
HqE(ω, ω̂0)dω∑Q

q=1

∫ bq
aq
HqE(ω, ω̂0)dω

. (12)

Since the energy of the speech signal is expected to be concentrated
in a harmonic structure, those harmonic bands with low fitting er-
ror and high energy ratio are more likely to retain most of the speech
components, while other regions are expected to contain the interfer-
ence signal. We therefore set two harmonic-band thresholds ζ and η
for selecting the reliable (speech) harmonic bands such that

Gq(ω) =

{
Ψ(ω − qω̂0), if εq ≤ ζ & Pq ≥ η, ω ∈ [aq, bq]
0, otherwise

(13a)

G(ω) =
∑
q

Gq(ω). (13b)

Figure 2 shows extraction results of the speech harmonics using
a frame of 32 ms. Figure 2 (a) shows the MBE fitting result, com-
puted using (8)-(10), for the case of clean speech where no inter-
ferer is present. We note that the MBE approximation, shown by the
dotted line, is capable of estimating the harmonics of clean speech.
Figure 2 (b) shows result for the case where a power-drill signal is
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Table 2. Comparison of mean tracking error (ē) between the SRP-PHAT method and the proposed method.
SRP-PHAT tracking method Proposed tracking method
T60 = 0.2 s T60 = 0.3 s T60 = 0.2 s T60 = 0.3 s

PD (SIR = 3 dB) 0.55 (m) 0.57 (m) 0.09 (m) 0.15 (m)
TR (SIR = -3 dB) 0.52 (m) 0.56 (m) 0.07 (m) 0.10 (m)

PD+TR (SIR = 3, 0 dB) 0.50 (m) 0.69 (m) 0.08 (m) 0.13 (m)
PD+TR (SIR = 3, -3 dB) 0.58 (m) 0.65 (m) 0.08 (m) 0.14 (m)

added into the speech signal at an SIR=5 dB. The beamformer out-
put S(ω, ̂̀−k ), shown by the solid line, therefore consists of spectral
components corresponding to the power drill at 400 and 1500 Hz and
the speech signal. Comparing Figs. 2 (a) and (b), we note that the
MBE fit shown in Fig. 2 (b) is able to estimate the speech harmonics
with reasonable accuracy albeit with some distortion. Estimation of
reliable speech harmonic bands is shown with G(ω) denoted by the
bold lines (which has been normalized to 0 dB for clarity.) Speech
harmonics that are selected usingG(ω) are shown in Fig. 1 (d) where
a 6 s speech with the presence of power-drill interference is consid-
ered. We note that employing the beamformer and MBE fit, speech
harmonic bands can be estimated as indicated by the dark lines of
the spectrogram.

With G(ω) in (13b), the new SRP function P (`) with weight
Wm(ω) is given by

P (`) =

∫
Ω

∣∣∣∣∣
M∑
m=1

Wm(ω)Fm(ω)eωDm(`)/c

∣∣∣∣∣
2

dω, (14a)

Wm(ω) =
G(ω)

|Fm(ω)| , (14b)

where Ω is the frequency over which the SRP function is evaluated.
Similar to the pseudo likelihood method [9, 10], the SRP function is
used to define the measurement likelihood in the PF framework,

p(zk|αk) =

{
P r(`), for voiced frame
UD(`), for unvoiced frame , (15)

where r is a control parameter to regulate the SRP function for
source tracking [10], and UD(·) is the uniform PDF over the consid-
ered enclosure domain D = {xk, yk|xmin ≤ xk ≤ xmax, ymin ≤
yk ≤ ymax}. The likelihood function is used as weights to update
the particles. The proposed ASLT framework is summarized in Ta-
ble 1.

3. SIMULATION RESULTS

Simulations were conducted using synthetic impulse responses gen-
erated by the method of images [26]. The dimension of the room
was 5 m × 5 m × 2.5 m, and the reverberation time T60 were 200
and 300 ms. Eight microphones were distributed along the perime-
ter of the room. (see Fig. 3). An 8 s male speech sampled at 16 kHz
from the TIMIT database [27] was used as a source signal. A power
drill (PD) signal obtained from the NOISEX-92 database [23] and a
recorded telephone ring (TR) signal were used as interferers. White
Gaussian noise (WGN) of 15 dB SNR was added to the microphone
signals. The positions of speech source were computed using a
frame size of 512 samples with N = 100 particles. We also used an
effective sample size threshold Nthr = 37.5, a nonlinear exponent
r = 2, harmonic-band thresholds ζ = 0.6 and η = 0.03. Total of
12 harmonic bands (Q = 12) was considered. The proposed method
is compared with the conventional method using SRP-PHAT [10].
Both methods were evaluated using 0 ≤ Ω ≤ 2 kHz from which,
for the proposed algorithm, speech pitch frequency was estimated
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Fig. 3. Comparison of tracking results when both PD and TR are present at
SIR = 0 dB, T60 = 200 ms. (a) Conventional SRP-PHAT tracking method.
(b) Proposed tracking method.

from 100 to 300 Hz using (8)-(10). In this paper, we quantify the
performance using ek = ||̂`

+

k − `k||2, where the ̂̀+

k is the posterior
estimated position at kth frame, and `k is the true source position.
The average tracking error ē = 1

K

∑K
k=1 ek quantifies the perfor-

mance across all audio frames.
Figure 3 compares the tracking result for T60 = 200 ms with

both telephone and power drill at 0 dB SIR. Figure 3 (a) shows that
the tracking performance of the conventional SRP-PHAT approach
is adversely affected by the interferers. Due to the high measurement
likelihood of SRP-PHAT for the interferer regions, the particles will
be ‘trapped’ once they are propagated there, in this case the region
near the power drill. The SRP-PHAT method has an average error
of 1.01 m indicating that it does not converge to the speech source
trajectory. On the other hand, Fig. 3 (b) shows the tracking perfor-
mance of the proposed method. This result shows that the proposed
method is less significantly affected by the presence of interferers
achieving an average error of less than 0.1 m.

Table 2 shows the average tracking error for various test condi-
tions. These results show that the proposed algorithm can achieve
better accuracy than the SRP-PHAT method. For instance, in the
presence of power drill at 3 dB SIR, the SRP-PHAT method ex-
hibits a large tracking error of 0.55 m when T60 = 0.2 s. The pro-
posed method achieves an error of less than 0.1 m which translates
to an 80% reduction of error over the SRP-PHAT method. Further-
more, the proposed method maintains its robustness in localization
and tracking in the presence of two interferers while the SRP-PHAT
approach suffers from large tracking error under low SIR condition.

4. CONCLUSION

A speech harmonic extraction based ASLT framework is proposed.
This method is capable of estimating the speech harmonic bands for
localizing and tracking. By only emphasizing the harmonic bands, a
better speech-sensitive measurement likelihood can be achieved re-
sulting in a better weight update for the particles. Simulation results
show that the proposed method can achieve a lower tracking error
than the conventional SRP-PHAT method in the presence of multi-
ple interferers.
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