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ABSTRACT

The use of the spherical harmonic representation of a soundfield is
useful when attempting to record, reproduce or manipulate the spa-
tial qualities of the soundfield. However, the practical requirement
of discrete sampling in the spatial domain brings errors to the sys-
tem, namely those of truncation and spatial aliasing. The truncation
error can be seen in the synthesized pressure, while spatial aliasing is
apparent when looking at the spherical harmonic coefficients them-
selves. These errors are linked to each other through the number and
position of the microphones in the array, as well as the method used
to perform numerical integration on the sphere, but they can exist
separately. This paper discusses the above topics and investigates
two approaches to numerical integration in regards to sampling the
soundfield using an em32 Eigenmike R©microphone array.

Index Terms— Spherical microphone array, spatial aliasing er-
ror, truncation error, spherical harmonics, quadrature coefficients.

1. INTRODUCTION

Spherical microphone arrays have a wide variety of uses in spa-
tial audio scenarios, such as beamforming [1], room acoustics mea-
surement, soundfield recording and Higher Order Ambisonics [2]
amongst others, due to the ease of their use with the spherical har-
monic representation of a soundfield. This representation allows the
soundfield to be described spatially in terms of radius, azimuth and
inclination, and thus a soundfield can be decomposed into spatial
components. The advantage of a spherical array over other shapes is
that it will have high spatial resolution in all directions and the ge-
ometry allows the use of the orthonormality properties of spherical
harmonics to aid in extracting the coefficients of the representation.

Several types of errors are involved with the spherical harmonic
representation that include some that arise from mathematical ap-
proximations, such as spatial aliasing [2, 3, 4], errors due to the
limitations of physical array set up (number of elements and posi-
tioning) e.g. truncation error [5, 6, 7, 8, 9] and those stemming from
the non-idealities associated with the construction of the array and
the microphones themselves [10]. Minimisation of the orthonormal-
ity error, a component of the spatial aliasing error, has been used to
select optimal numerical integration, or quadrature, coefficients for
non-uniformly spaced array designs [11].

Truncation and spatial aliasing errors are in a practical sense
closely related to the array geometry and numerical integration co-
efficients used, however they are separable in theory. This paper

explicitly defines the aliasing and truncation errors as separate en-
tities. It goes on to investigate an example of the spherical array
em32 Eigenmike R©for two particular sets of quadrature coefficients
and comments on the relative benefits of each.

2. BACKGROUND

We have found that conventions and notations used in this field vary
widely between and even amongst research groups. As such, we
find it prudent to specify the assumptions we have made to avoid
confusion.

2.1. Conventions and Definitions

Spherical coordinates are defined by r = (r, θ, φ) as the radius,
angle of inclination from the positive z-axis and angle of azimuth
from the positive x-axis respectively.

We define the pressure function of a unit amplitude spherical
wave in (1), where ω and k are the angular frequency and wave num-
ber and rs = (rs, θs, φs) is the source location.

p(t, k, r) =
exp{i(ωt− k|r− rs|)}

|r− rs|
(1)

P (k, r) is the Fourier transform of p(t, k, r), taken using the en-
gineering convention where S(ω) =

´∞
−∞ s(t)e

−iωtdt. Expanding
P (k, r) in terms of r, θ and φ, we arrive at the general interior so-
lution to the wave equation in a non-scattering environment, valid
where r < rs [12]

P (k, r) =

∞∑
n=0

jn(kr)

n∑
m=−n

Amn (k)Y mn (θ, φ) (2)

where jn(kr) is the spherical Bessel function, Y mn (θ, φ) is the
spherical harmonic of order n and degree m, or mode (n,m) and
Amn (k) are source-dependent spherical harmonic coefficients. There
are several definitions for spherical harmonics, but we choose to
use the following, which includes the associated Legendre function
P
|m|
n (cos θ).

Y mn (θ, φ) =

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimφ (3)

The theoreticalAmn for a point source at rs are defined as follows
to conform with the engineering Fourier transform convention, and
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include the spherical Hankel function of the second kind h(2)
n (krs).

∗ indicates the complex conjugate.

Amn (k) = −4πikh(2)
n (krs)Y

m∗
n (θs, φs) (4)

2.2. Scattering from a rigid microphone array

An array with microphones placed on the surface of a rigid sphere of
radius a acts as a scatterer. This results in a compound soundfield,
where the jn(kr) term in (2) is replaced by bn(kr, ka) [12]

bn(kr, ka) = jn(kr)− j′n(kr)

h
(2)′
n (ka)

h(2)
n (kr), (5)

where the first term represents the incident field, the second term
the scattered field and ′ indicates the derivative of the function with
respect to kr. This term can be simplified by the Wronskian rela-
tionships at r = a to

bn(ka) =
−i

(ka)2h
(2)′
n (ka)

(6)

2.3. Orthonormal property of Spherical Harmonics

Spherical harmonic functions are orthonormal when multiplied and
integrated over the sphere. This can be expressed for the continuous
case by an integral over the sphere

´
dΩ, as in (7), and approxi-

mated for the discrete case by a sum over the microphone positions
indicated by subscript s in (8).

ˆ
Y mn (θ, φ)Y m

′∗
n′ (θ, φ)dΩ = δnn′δmm′ (7)

S∑
s=1

αsY
m
n (θs, φs)Y

m′∗
n′ (θs, φs) = δnn′δmm′ + εmm

′
nn′ (8)

where αs are the numerical integration, or quadrature coefficients,
for the chosen sampling points (θs, φs). Quadrature refers to per-
forming a numerical integration of a function over a surface accu-
rately up to a certain function order. εmm

′
nn′ refers to the orthonormal-

ity error between modes (n,m) and (n′,m′).
The αs are chosen such that εmm

′
nn′ = 0 for n, n′ ≤ N , the

truncation order. It is therefore possible to extract the Amn ’s from
pressure signals in the spatially continuous/discrete case using the
following integral/sum:

Amn (k) =
1

bn(ka)

ˆ
Y m∗n (θ, φ)P (k, a, θ, φ)dΩ (9)

Amn (k) =
1

bn(ka)

S∑
s=1

αsY
m∗
n (θs, φs)P (k, a, θs, φs) (10)

3. SEPARATION OF THE TRUNCATION AND SPATIAL
ALIASING ERRORS

A spherical wave has an infinite representation in the spherical har-
monic domain. We often choose, or are forced by the physical con-
straints of an array, to limit that representation to a particular order
N , often called the truncation or array order. This limitation leads
to both truncation and spatial aliasing errors. Several authors have
investigated truncation and spatial aliasing errors both theoretically
and practically. They are closely related, but occur due to different
causes. This section will discuss each type of error individually and
how they both manifest in a practical scenario.

3.1. Truncation error

The truncation error arises when a limit is placed on the infinite sum
in (2) such that n ranges from 0 to some order N , i.e. P (k, r) =
PN (k, r) + Pn>N (k, r).

PN (k, r) =

N∑
n=0

jn(kr)

n∑
m=−n

Amn (k)Y mn (θ, φ) (11)

Pn>N (k, r) =
∑
n>N

jn(kr)

n∑
m=−n

Amn (k)Y mn (θ, φ) (12)

Hypothetically, if a continuously pressure-sensitive spehrical ar-
ray existed it would be possible to extract all Amn ’s exactly, i.e. with
no spatial aliasing, but for computational or data storage purposes
we might still wish to truncate the series. In terms of resynthesizing
a soundfield from the stored coefficients, since the jn(kr) term be-
comes smaller with increasing order n, high order modes contribute
less information to the pressure signal while requiring many more
coefficients. As such there are diminishing returns to increasing the
truncation order N .

Several closed-form solutions for bounding functions of the
truncation error have been derived for both plane and spherical
waves [7, 8, 9], given certain assumptions. All are derived from
(12), the tail end of the infinite summation over n. These authors
used theoretical spherical harmonic coefficients in their calculations,
and as such do not include any spatial aliasing. Other authors in-
clude a Gaussian noise term derived from the effects of the N + 1th

order modes [5, 6], and thus include spatial aliasing errors within
the truncation error definition.

3.2. Spatial aliasing errors

Spatial aliasing manifests as a difference between the theoretical
(Amn ) and the array-extracted (Âmn ) spherical harmonic coefficients
of a signal, Ãmn . It generally occurs when high order modal com-
ponents of the signal are shifted to low order coefficients, due to
discrete orthonormality errors. Spatial aliasing will not occur if the
signal in question is spatially bandlimited, or essentially truncated,
to an order lower than the order of the array.

The aliasing effect of all higher order modes into the mode
(n,m), designated Ãmn (k), is related to the truncation error through
Pn>N and is dependent upon the number of sampling points S, their
positions (θs, φs) and the quadrature coefficients αs. As such, good
choices for these parameters are important.

Ãmn (k) =
1

bn(ka)

S∑
s=1

αsY
m∗
n (θs, φs)Pn>N (ka, θs, φs) (13)

Spatial aliasing can occur when there is no truncation error.
Equation (10) permits the extraction of all the soundfield coeffi-
cients, such that no truncation error exists, however the accuracy
of the extracted coefficients is determined by how closely the cho-
sen microphone positions and quadrature coefficients approximate
orthonormality, which is generally not well for increasing order.

Various sampling schemes requiring greater or fewer points and
their impact on spatial aliasing have been investigated in [3, 10]. The
particular scheme of interest to us is that used by the em32 and this
will be covered in greater detail in Section 4.
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Fig. 1. Orthonormality errors εmm
′

nn′ for the em32 array using ‘non-uniform’ (top) and ‘uniform’ (bottom) αs.

3.3. Choice of array/truncation order

The truncation order N is generally described as being limited by
the number of elements in the array, (N + 1)2 ≤ S [12]. This lower
bound is only met if the method used to extract Amn ’s does not make
use of the orthonormality principle. A method to extract N th order
coefficients involving matrix inversion requires at least (N + 1)2

sampling points so that the system of equations to be solved is not
underdetermined [8]. When exploiting the orthonormality property
the number of elements required to achieve good extraction up to
orderN is often much higher and could be greater than the minimum
number of points to extract N + 1 orders [10, 13].

In practice, once a particular array is chosen the tradeoff between
truncation error and spatial aliasing error is what really determines
the chosen truncation order. The following section will discuss in
detail the nearly-uniform sampling scheme of the em32 spherical
array and two different choices of quadrature coefficients.

4. SPATIAL ALIASING ERRORS WITH THE EM32

The em32 Eigenmike R©is a 4thorder array consisting of 32 omnidi-
rectional electret microphones positioned on the surface of a rigid
sphere. Their radii are 4.2 cm and (θ, φ) coordinates correspond to
the face-centers of a truncated icosahedron. This sampling scheme
is deemed nearly uniform and uses the least microphones necessary
to obtain a accurate 4thorder extraction [10]. We have two options
when choosing the quadrature coefficients αs that give slightly dif-
ferent results. They can uniformly be set to 4π/32 as in [4], or
alternatively can vary with position (‘non-uniform’) and be 9π/70
for points corresponding to the twenty hexagonal faces and 5π/42
for the twelve pentagonal faces [14].

Let us return to equation (13) which decribes the aliasing of all
higher order modes (n > N,m) into a low order mode (n,m). By
looking at the aliasing of a single higher order mode (N ,M) into a
particular lower order mode (n,m), designated Ãm,Mn,N (k), we can
see that it is dependent on the orthonormality error for those two
modes (and thus on the choice of αs) and the ratio of the bn(ka)
terms of both modes.

Ãm,Mn,N (k) =
1

bn(ka)

S∑
s=1

αsY
m∗
n (θs, φs) A

M
N (k)bN (ka)YMN (θs, φs)

= AMN (k)
bN (ka)

bn(ka)
εmMnN (14)

where εmMnN is the orthonormality error between modes (n,m) and
(N ,M). Thus we can rewrite (13) as

Ãmn (k) =
∑
N>N

bN (ka)

bn(ka)

N∑
M=−N

AMN (k)εmMnN (15)

The following sections will investigate the impact of both
choices of αs on the spatial aliasing equation.

4.1. Orthonormality Errors

Figure 31 shows the patterns in the orthonormality errors εmm
′

nn′ from
(8) that occur when using ‘uniform’ or ‘non-uniform’ quadrature co-
efficients. The aliasing patterns and magnitude of the orders greater
than 5 are similar in both cases. The main difference between the two
methods is that with ‘uniform’ αs and for n ≤ 4, the orthonormality
error is not vanishingly small at roughly -40 dB. However compared
to the higher order errors, it seems that this could be insignificant.
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Fig. 2. bN/n(ka) plotted for n = 0 : 4 and N = 6 : 10 for varying
ka. Please view the PDF to see in color.

In both cases, the stepped pattern of larger errors appearing with
increasing order n′ is caused by the fact that this combination of
microphone positions and quadrature coefficients allow functions of
up to 9thorder to be integrated accurately, i.e. when n+n′ ≤ 9 since
the integrated function is the multiple of two spherical harmonics. It
is also observed that larger orthonormality errors occur when both
n + n′ and m + m′ are even. The quadrature coefficients perform
better when either n+n′ or m+m′ are odd, even when beyond the
accurate integration limit of the array.

4.2. bn(ka) modification of the orthonormality error

We will now look at the magnitude of the portion of the aliasing term
involving bn(ka). Using (6), this simplifies to the following, which
we will refer to as bN/n(ka) henceforth.

bN (ka)

bn(ka)
=
h
(2)′
n (ka)

h
(2)′
N (ka)

(16)

Figure 2 shows how the absolute value of this function behaves
with n = 0 : N , N > N and ka. As both n and N increase,
the magnitude decreases for a specific ka. This graph can be used
to determine frequencies at which particular orders may begin to
have significant aliasing, as long as there is a corresponding high
orthonormality error.

4.3. Spatial aliasing of a spherical wave

To simplify testing the spatial aliasing errors due to the two different
sets of quadrature coefficients, we will use a 2 kHz spherical wave
positioned at (1, 0, 0). This means for any mode where m 6= 0,
the spherical harmonic coefficient will be zero, which allows us to
observe the minimal number of coefficients aliasing to other modes.

Figure 3 was created by extracting all modes up to 4th order from
a signal comprised of a single modal component of the wave de-
scribed above, i.e. implementing (14) for N = 0 : 10, M = 0,
then subtracting the theoretical Amn from the appropriate modes to
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Fig. 3. Spatial aliasing for each modeA0
n′ of a 2 kHz point source at

(1, 0, 0) when using ‘non-uniform’ (left) and ‘uniform’ (right) αs.

observe the error. It can be seen that the 6th order mode aliases into
the 4th slightly (around−70 dB) in both cases, in a pattern following
that shown in the Figure 3. In the case of ‘uniform’ αs, aliasing of
both 3rd and 4th order modes into modes of the same order but dif-
ferent degrees, while none appears for the ‘non-uniform’ case. The
patterns we see here again match the error patterns shown in Figure
1, but with the added effect of the bN/n(ka) term. In Figure 2, N
was selected to be greater than the array orderN and it was seen that
with increasing order N , the overall affect of aliasing on the array
decreases for a particular frequency. However if we allow N < n,
the term becomes large. The -40 dB orthonormality errors for this
region seem insignificant on their own, but when combined with the
bN/n(ka) term become significant. This shows how important it is
that the orthonormality error should be zero for n and n′ < N , as
stated in Section 2.3 - for ‘uniform’ αs this is simply not the case.

In terms of the higher orders, we can see that the bN/n(ka) term
decays after 6th order to counteract the higher orthonormality errors
for those orders, making aliasing from higher orders negligible.

5. CONCLUSION

This paper has described how both truncation and spatial aliasing er-
rors exist independently of each other and also explained how they
are related to each other in practical spherical array scenarios. It has
also looked at a specific array, the mh acoustics em32 Eigenmike R©,
and investigated the effect of using two different sets of quadrature
coefficients, ‘non-uniform’ and ‘uniform’, on the spatial aliasing er-
ror. It is recommended that quadrature coefficients be chosen to min-
imise the orthonormality error for orders less than the truncation or-
derN , as these errors are amplified in the spatial aliasing error, while
orthonormality errors for n > N are attenuated.

6. RELATION TO PRIOR WORK

The work presented here has focused on separating the definitions of
truncation error and spatial aliasing error, as well as looking at how
spatial aliasing error is affected by the choice of quadrature coeffi-
cients. Past studies have combined the two errors by treating higher
order components as noise that is included in the truncation error
[6] and combined capsule noise and spatial aliasing [2] which can
confuse the issue. ‘Uniform’ quadrature coefficients have been used
in [4] but this work has shown that better ‘non-uniform’ coefficients
can be chosen to yield more accurate results.
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