
FAST AND RELIABLE TDOA ASSIGNMENT IN MULTI-SOURCE REVERBERANT
ENVIRONMENTS

Martin Kreißig and Bin Yang

Institute of Signal Processing and System Theory, University of Stuttgart
email: {martin.kreissig, bin.yang}@iss.uni-stuttgart.de

ABSTRACT

The localization of acoustic sources based on Time Difference of
Arrivals (TDOA) is very vulnerable in reverberant environments. In
this paper, we propose a method to synthesize fully and partially con-
sistent TDOA combinations. They fulfill the zero cyclic sum condi-
tion along all loops, which is a necessary condition for assigning
TDOAs to an acoustic source. Our method is based on an efficient
search of all sets of maximally connected compatible fundamental
loops in a compatibility-conflict graph. We both prove the correct-
ness of our algorithm and show some experimental results.

Index Terms— acoustic source localization, TDOA assignment,
synthesis of consistent graph, compatibility-conflict graph

1. INTRODUCTION

Acoustic source localization is widely performed by using time dif-
ference measures obtained from the cross-correlation of two micro-
phone signals. This is necessary in applications where the time of
emission is unknown. More precisely, the TDOAs are obtained from
the peaks in the Generalized Cross-Correlation (GCC) that is quite
robust in moderate reverberant environments [1, 2]. Especially the
GCC-PHAT variant [3] allows TDOA peaks to be detected at low
SNR due to its pre-whitening filter.

Nevertheless, this filter also increases the noisy part of the spec-
trum and hence adds erroneous candidates to our TDOA estimates.
Moreover, the periodicity of the speech signal, reflections and mea-
surement errors increase the number of spurious TDOAs. To over-
come this ambiguity, many approaches have been proposed that ap-
ply either a special cost function to improve the TDOA estimation
[4] or apply even more complex algorithms like SRP-PHAT [2] or
BSS [5, 6]. Even though these approaches reach quite good de-
tection rates, they are restricted to less speakers than microphones
(BSS, ICA) and limited by their high computational complexity for
real-time applications.

In this paper, we present a new improved algorithm that exam-
ines all TDOA candidates of all microphone pairs and finds TDOA
sets that stem from the same source and same propagation paths.
These sets can be full (containing all sensor pairs) or partial. This
algorithm can be downloaded from [7].

This paper is structured as follows: Sec. 2 addresses the am-
biguity problem of TDOA and describes different disambiguation
approaches. Sec. 3 gives an overview of ouf synthesis approach. In
Sec. 4 we show how to reformulate the last step of our synthesis ap-
proach as a new compatibility-conflict graph problem and present a
new algorithm to find its solutions. Finally, we show some measure-
ment results in Sec. 5.

2. TDOA DISAMBIGUATION

2.1. Ambiguity of TDOA assignment

The TDOA candidates τ̂ are computed as positions of peaks in the
GCC-PHAT function Rij(τ) for the microphone pair (i, j). As dis-
cussed in [8] and [9], the peak detection is not unique due to mul-
tiple sound sources, reflection paths and periodicities in the source
signals. In order to obtain all direct path TDOAs, one has to take sev-
eral TDOA candidates per microphone pair. With M microphones
there are at maximum N =

(

M

2

)

such pairs with Kn TDOA candi-
dates each (n = 1, . . . , N).

For a successfull localization, one has to pick for each source the
correct direct path TDOAs at each micropohone pair and combine
them. These TDOA sets are hard to find as there are

∏N

n=1
Kn

possible sets.

2.2. Disambiguation techniques

In [9] a speed estimate criterion was proposed to decide whether a
given TDOA set stems from direct path Time of Arrival (TOA). The
criterion is promising and is combined with the algorithm presented
in this paper in a real localization scenario, see [10] .

The disambiguation considered in this paper was initiated in [8].
It exploits the property that the sum of TDOAs from the same source
and propagation paths along a loop is zero: τij+τjk+ . . .+τli = 0.
A set of TDOA estimates from different microphone pairs which
fulfills this condition along all loops is called consistent. In [8] the
synthesis of consistent graphs is performed by combining consistent
triples (loops of length 3). This approach, however, is restricted to
the existence of consistent triples which is not always the case in
practice.

This restriction is relaxed in [11] where a set of fundamental
loops (FL) is used to represent all loops in a TDOA graph. A FL
whose TDOAs satisfy the zero cyclic sum condition is called a con-
sistent fundamental loops (cFL). However, these cFLs are combined
together by a synthesis algorithm resulting in fully consistent graphs.
If a microphone pair measures only spurious TDOAs, it can happen
that no consistent graphs are found at all by the algorithm in [11]
though partially consistent TDOA sets (i.e. with some missing pairs)
do exist.

In this paper we propose an improved algorithm to combine
cFLs to fully or partially consistent TDOA sets.

3. SYNTHESIS OF CONSISTENT GRAPHS

The microphone set is represented by a graph G(V,E) with the ver-
tex set V = {m1, . . . ,mM} representing the microphones and the
edge set E = {e1, . . . , eN} representing the microphone pairs. The

355978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

TDOA candidates define the search space W = W1 × · · · × WN

where Wn = {τn,1, . . . , τn,Kn
} are the TDOAs of the nth micro-

phone pair.
The synthesis of consistent graphs is performed in several steps

as shown in Fig. 1. They are discussed in the subsequent sections.

generate spanning tree and FLs

compute cFLs

combine cFLs to all maximal (sub)graphs

Fig. 1. Overview of the synthesis of all maximal consistent sub-
graphs.
3.1. Generation of cFLs

We determine the cFLs according to the proposed method in [12, 11,
13, 14]. The spanning tree of the graph is generated first. Then each
of the unused edges that define the complementary tree closes a FL
when attached to the spanning tree. For a connected graph with M

vertices and N edges, there is a total number of N − M + 1 FLs.
For our purpose, we choose the Breadth-First Search (BFS) spanning
tree [15] as it produces shorter FLs.

For each FL which typically consists of a small number (≥ 3) of
edges we check all TDOA combinations. The FLs are represented as
column vectors li ∈ {−1, 0, 1}N , where ”1” represents an equally
directed edge and loop and a ”−1” counterwise. Thus the zero-cyclic
sum condition can be written as lTi w = 0 for i = 1, . . . , N−M+1.
Due to quantization errors, noise and smoothing effects of overlap-
ping peaks in the GCC-PHAT, we check the approximate consis-
tency

|lTi w| ≤ ε ·
√

||li||0, (1)

where ε is a threshold in the unit of sampling interval like the TDOA
values τij and || · ||0 denotes the l0-norm that enumerates the number
of non-zero elements, i.e. the number of edges in the FL li. The
number of cFLs per topological FL li is assumed to be K̃i. Next, we
combine those cFLs that have the same TDOA values at the common
edges.

3.2. Combination of cFLs

When two consistent subgraphs have the same TDOAs on common
edges, they are called compatible and we can combine them together
to a larger graph containing both subgraphs. If the TDOAs on com-
mon edges are different, the two subgraphs are in conflict and we
are not allowed to combine them. The same applies when the two
subgraphs have no common edges at all. In [14] it is proven that
a bottom-up synthesis, i.e. a successive combination of compatible
consistent subgraphs, starting with the cFLs from Sec. 3.1, always
returns a larger graph that is consistent as well. But [14] does not
tell us how to do this combination. We propose in Sec. 4 a combi-
nation algorithm that finds all, maximal combinations of compatible
cFLs and thus all consistent TDOA graphs based on the particular
set of FLs.

4. FINDING ALL POSSIBLE COMPATIBLE
COMBINATIONS OF CFLS

4.1. cc-graph

The problem of combining all compatible cFLs is not trivial, as all
combinations have to be taken into account. Moreover, no redun-

dant solutions, i.e. combinations that are subsets of other combina-
tions, are allowed. Therefore, we represent the cFLs as vertices in
a compatibility-conflict graph (cc-graph) introduced in the accom-
panying paper [14]. According to [14] each pair of vertices in a
cc-graph has three possible relations. They can be compatible or in
conflict or unrelated because the underlying two cFLs are compatible
(same TDOAs for common edges) or in conflict (different TDOAs
for common edges) or have no common edges at all.

These three states lead to the cc-graph with compatible, con-
flicting and free connections. An example is presented in Fig. 2
where the vertex set V = {vk|k = 1, . . . , 6} represents the dif-
ferent cFLs. Two compatible cFLs are connected by a solid line
and two conflicting cFLs by a dashed line. cFLs with no com-
mon edges are not connected in the cc-graph. The cc-graph in
Fig. 2 has 4 sets of maximally connected compatible vertices:
{v1, v2, v3}, {v1, v2, v4}, {v2, v3, v5, v6} and {v2, v4, v6}.

v1 v6

v3 v4

v2 v5

Fig. 2. A compatibility-conflict graph: compatible vertices are
marked by a solid edge and conflicting vertices by a dashed edge

The adjacency matrix of the cc-graph is given by

Acc =

0 1 0 0 −1 −1
1 0 1 1 0 1
0 1 0 −1 1 0
0 1 −1 0 −1 0

−1 0 1 −1 0 1
−1 1 0 0 1 0

, (2)

where a ”1” indicates a compatible neighbourhood and ”−1” a con-
flicting one.

Based on the cc-graph we want to find all maximally connected
combinations of cFLs. The proposed algorithm is similar to that of
Bron and Kerbosch [16] for finding all sets of completely connected
vertices. While Bron and Kerbosch only consider graphs with two
different neighbourhood states (connected or not connected), our cc-
graph has three different neighbourhood states and is more complex.

4.2. Algorithm

We call our algorithm to find all sets of maximally connected com-
patible vertices in a cc-graph characterized byAcc the Compatibility-
Conflict Graph (CCG) algorithm. First we introduce some notations.
Let V be the set of all vertices in the cc-graph. Let Ṽ be the set of
currently considered vertices. The algorithm is initialized to Ṽ = V

at the beginning and changes during the algorithm because already
visited vertices will be excluded from Ṽ . Let l denote the current
solution, the set of connected compatible vertices. It is initialized to
the empty set ∅ at the beginning. The notation

NṼ (l) = {v ∈ Ṽ |∃u ∈ l : [Acc]vu = 1 ∧ @w ∈ l : [Acc]vw = −1}
(3)

denotes the set of vertices from Ṽ that are compatible to at least
one vertex in the solution l and have no conflict to any vertices in l.

356

[Acc]ij indicates the element at the ith row and jth column of Acc.
Similarly, we define

N̄Ṽ (l) = {v ∈ Ṽ |∃u ∈ l : [Acc]vu = −1} (4)

as the set of vertices from Ṽ that have conflict to at least one ver-
tex in l. In other words, NṼ (l) and N̄Ṽ (l) represent the compatible
and conflicting neighbours of l in Ṽ , respectively. During the ini-
tialization of the algorithm, we use the convention NṼ (∅) = Ṽ and
N̄Ṽ (∅) = ∅. Let X denote the set of vertices which have already
been visited in previous iterations and thus shall be skipped. It is ini-
tiated to ∅ and is extended successively by the visited vertices. The
CCG algorithm is started by the call CombineAll (Acc, V, ∅, ∅)
where the recursive routine CombineAll (Acc, Ṽ , l,X) is sum-
marized below.

1: CombineAll(Acc, Ṽ , l,X)
2: determine NṼ (l) and N̄Ṽ (l)
3: if NṼ (l) = ∅ % no compatible neighbours

then
4: save l % save solution
5: else
6: Ṽ = Ṽ \ N̄Ṽ (l) % remove conflicting neighbours
7: for n ∈ NṼ (l) \ X % compatible neighbours not visited

yet do
8: CombineAll(Ṽ \ n, l ∪ n,X)
9: X = X ∪ n % mark n as visited

10: end for
11: end if

As an example Tab. 1 shows the complete procedure of CCG
for the cc-graph in Fig. 2. It finds four solutions marked by the box
in the corresponding column. In the first iteration with Ṽ = V

and l = ∅, the neighbour set NṼ (l) = V is considered as the set
of root vertices indicated by the level 0 in Tab. 1. Then in each
iteration, NṼ (l) and N̄Ṽ (l) are determined and N̄Ṽ (l) is removed
from Ṽ . For each compatible neighbour n, we call CombineAll
recursively by removing n from Ṽ and adding it to l. Once there
are no compatible neighbours left we store the solution l. When n is
completely processed, we add it to the set of visited vertices X .

4.3. Proof

In this section, we prove the correctness of the CCG algorithm. As
previously mentioned, we claim to find all sets of maximally con-
nected compatible vertices.

Lemma 1. Each vertex must be examined once as the root vertex.

Proof. We prove Lemma 1 by contradiction. Given the cc-graph

Acc =

0 1 0
1 0 0
0 0 0

 . (5)

All maximally connected compatible vertex sets are {1, 2} and {3}.
If only one root vertex is chosen, we obtain either {1, 2} or {3}, not
both.

Lemma 2. Given a root vertex n0 from Ṽ , CombineAll (Ṽ \
n0, n0, ∅) finds all solutions containing n0.

Proof. CombineAll searches the whole set of vertices Ṽ for com-
patible neighbours and removes those that have a conflict with n0.
This is correct because, by definition, we only look for compati-
ble combinations with n0. Then we consider each solution pair
l = {n0, n}, n ∈ NṼ (n0), and apply the same combination pro-
cedure recursively to l. Due to the fact that each combination of l
with an n ∈ NṼ (l) initiates a new search branch and we do not re-
move any compatible neighbours, we are sure that all combinations
including l and n are found.

Lemma 3. CombineAll saves a solution, only when it is maximal.

Proof. CombineAll stops at two different stages: Either when
there are no compatible neighbours of the current solution any more
(line 3) or when the remaining neighbours belong to X (line 7). The
former case implies that the solution l is maximal as there are no
neighbours left. In the latter case, the current vertex has already
been combined with a vertex x ∈ X previously. From Lemma 2
we know that CombineAll has found all combinations containing
the vertex x. Thus we can skip a further search and return without
saving.

Theorem 1. CombineAll finds all maximal solutions.

Proof. Based on Lemma 2 and Lemma 3, we know that CombineAll
finds all maximal solutions starting from a root vertex n0. Lemma 1
states that all vertices have to be examined. Hence the algorithm
finds all sets of maximally connected compatible vertices.

As a result, two useful properties of the algorithm follow im-
mediately. First, each solution found by the algorithm is unique.
The algorithm will never find the same solution more than one time.
The reason is the use of the set X of excluded vertices. It indicates
that the same set of compatible vertices has already been found pre-
viously starting from another root vertex. Secondly, it will never
happen that one solution l1 is a subset of another solution l2. In
Fig. 2 and Tab. 1 the algorithm returns the solution {v2, v3, v5, v6},
but never its subsets like {v2, v3, v5}, {v2, v3, v6}, . . . as additional
solutions. The reason is that the algorithm always finds sets of max-
imally connected compatible vertices.

5. MEASUREMENTS

The synthesis of consistent graphs by using the CCG algorithm was
evaluated on real acoustic measurements in a room of size 5.5 ×
6.8 × 2.6 m3 with T60 ≈ 0.8ms. Three sources were modeled
by three loudspeakers playing back noise signals to avoid speech
pauses. More results on acoustic localization by using the same
setup with both noise and speech/music as source signals and by us-
ing the synthesis algorithm in this paper for TDOA disambiguation
can be found in [10].

5 microphones positioned on a tetrahedra recorded the signals at
fs = 48kHz. Then GCC-PHAT extracted Kmax ∈ {5, 10} TDOA
candidates per microphone pair on a block length of 8192 samples
(170ms). For each of the Kmax maxima of GCC-PHAT, a quadratic
interpolation is done to obtain TDOA estimates with an accuracy of
fractional sampling interval. The synthesis algorithm in Sec. 3 and
4 was applied to extract consistent TDOA (sub)graphs. Note that
M = 5 microphones lead to maximally N = 10 microphone pairs
(edges). Hence, the synthesized graphs can have N̄ = 3 to 10 edges.
Finally, the localization by squared-range-difference based LS esti-
mate (SRD-LS) [17] is performed together with the speed estimate

357

level n l X Ṽ NṼ (l) save l N̄Ṽ (l) Ṽ \ N̄Ṽ (l) NṼ (l) \X
0 ∅ ∅ 1,2,3,4,5,6 1,2,3,4,5,6 ∅ 1,2,3,4,5,6 1,2,3,4,5,6
ia 1 1 ∅ 2,3,4,5,6 2 5,6 2,3,4 2
iia 2 1,2 ∅ 3,4 3,4 ∅ 3,4 3,4

iiia 3 1,2,3 ∅ 4 ∅ yes

iiib 4 1,2,4 3 3 ∅ yes

ib 2 2 1 1,3,4,5,6 1,3,4,6 ∅ 1,3,4,5,6 3,4,6
iia 3 2,3 1 1,4,5,6 1,5,6 4 1,5,6 5,6
iiia 5 2,3,5 1 1,6 6 1 6 6

iva 6 2,3,5,6 1 ∅ ∅ yes
iiib 6 2,3,6 1,5 1,5 5 1 5 ∅
iib 4 2,4 1,3 1,3,5,6 1,6 3,5 1,6 6

iiia 6 2,4,6 1,3 1 ∅ yes
iic 6 2,6 1,3,4 1,3,4,5 3,4,5 1 3,4,5 5
iiia 5 2,5,6 1,3,4 3,4 3 4 3 ∅
ic 3 3 1,2 1,2,4,5,6 2,5 4 1,2,5,6 5
iia 5 3,5 1,2 1,2,6 2,6 1 2,6 6
iiia 6 3,5,6 1,2 2 2 ∅ 2 ∅
id 4 4 1,2,3 1,2,3,5,6 2 3,5 1,2,6 ∅
ie 5 5 1,2,3,4 1,2,3,4,6 3,6 1,4 2,3,6 6
iia 6 5,6 1,2,3,4 2,3 2,3 ∅ 2,3 ∅
if 6 6 1,2,3,4,5 1,2,3,4,5 2,5 1 2,3,4,5 ∅

Table 1. Details of the algorithm for the cc-graph in Fig. 2

criterion like in [10]. Both the number of found consistent graphs
and the localization results are averaged over 50 blocks (8.5s).

First we present the efficiency of the algorithm. We evaluated
the localization on a standard dual-core PC without and with the
graph synthesis. The computation time was measured in Matlab.
Without the graph synthesis, i.e. we do localization for all KN

max ∈
[510, 1010] possible TDOA combination, we measured 0.957sec for
Kmax = 5 and 13.952sec for Kmax = 10 in average for one block
of 170ms. With the additional synthesis of consistent graphs and a
dramatically reduced number of TDOA sets, we measured for one
block 0.081sec for Kmax = 5 and 0.135sec for Kmax = 10 includ-
ing the CCG algorithm. This is a factor of 100.

Tab. 2 shows the number of synthesized consistent graphs aver-
aged over all blocks. Due to space limitations, we only present the
fully consistent graphs (N̄ = 10) and the partially consistent graphs
(N̄ = 9).

Kmax = 5 Kmax = 10
N̄ = 10 N̄ = 9 N̄ = 10 N̄ = 9

ε = 1 1.2 1.4 1.8 2.8
ε = 2 1.2 1.6 3.5 16.7

Table 2. Average number of consistent TDOA graphs

Obviously, a larger value of Kmax results in a larger number of
TDOA candidates per microphone pair and a larger number of found
consistent graphs. According to [8], Kmax should not be chosen too
small because the direct path TDOAs do not necessarily appear as
the largest maxima in GCC-PHAT. Also a larger value of the thresh-
old ε in (1), i.e. a more tolerant check of the zero sum condition,
leads to a larger number of cFLs and a larger number of consistent
graphs. Since it is likely that some microphone pairs do not find
the correct TDOAs, the number of partially consistent graphs (e.g.
N̄ = 9) can be larger than that of fully consistent graphs (N̄ = 10).

Finally, we present the localization errors. The position error in
Tab. 3 represents the Euclidean distance in cm from the estimated

position to the closest loudspeaker. It is averaged over all sources
and all blocks. The loudspeakers have a membrane of 15cm diame-
ter.

Kmax = 5 Kmax = 10
N̄ = 10 N̄ = 9 N̄ = 10 N̄ = 9

ε = 1 8.5 8.0 8.2 18.3
ε = 2 8.5 21.5 12.4 162.2

Table 3. Average position error in cm over all blocks

The small localization errors of fully consistent graphs show that
the estimated positions are more realiable the more TDOAs we use.
Due to the loudspeaker size, the correct positions of the sources can-
not be optimally defined and hence the position errors are in a rea-
sonable range. If TDOAs are missing, i.e. partially consistent graphs
are synthesized, we obtain less correct position estimations. As a
consequence of the relaxation of the cyclic sum condition, higher
position errors are observed from larger ε values. Thus, one has to
choose Kmax and ε carefully in order to keep all consistent graphs
(fully and partially) of the corresponding sources and to obtain small
localization errors.

6. CONCLUSIONS

This paper presents a new algorithm to synthesize fully and partially
consistent graphs, given the TDOA estimates from a microphone ar-
ray. As experiments show, it allows a fast and reliable TDOA as-
signment for some localization in a multi-source reverberant envi-
ronment.

REFERENCES

[1] Carter, G. Clifford, “Coherence and Time Delay Estimation,”
Proceedings of the IEEE, vol. 75, no. 2, pp. 236–255, 1987.

358

[2] Brandstein, Michael and Ward, Darren, Microphone Arrays:
Signal Processing Techniques and Applications, Springer Ver-
lag, 2001.

[3] Knapp, Charles H. and Carter, G. Clifford, “The General-
ized Correlation Method for Estimation of Time Delay,” IEEE
Trans. on Acoustics, Speech, and Signal Processing, vol. 2, pp.
320–327, 1976.

[4] Nejad, Mohamad Hesam Mahmodi and Mahmoodi, Davood
and Zohroudi, Salehe, “Multiple Speaker Localization in a
Smart Room,” in Int. Conf. on Multimedia and Signal Process-
ing, May 2011, pp. 319–323.

[5] Lombard, Anthony and Buchner, Herbert and Kellermann,
Walter, “Multidimensional Localization of Multiple Sound
Sources using Blind Adaptive MIMO System Identification,”
in Proc. IEEE Int. Conf. on Multisensor Fusion and Integra-
tion for Intelligent Systems, 2006, pp. 7–12.

[6] Loesch, Benedikt and Uhlich, Stefan and Yang, Bin, “Multidi-
mensional Localization of Multiple Sound Sources using Fre-
quency Domain ICA and an Extended State Coherence Trans-
form,” in IEEE Workshop on Statistical Signal Processing,
Aug. 2009, pp. 677–680.

[7] “http://www.iss.uni-stuttgart.de/download,” .

[8] Scheuing, Jan and Yang, Bin, “Disambiguation of TDOA Es-
timation for Multiple Sources in Reverberant Environments,”
IEEE Trans. on Audio, Speech, and Language Processing, vol.
16, no. 8, pp. 1479–1489, Nov. 2008.

[9] Hu, Jwu-Sheng and Yang, Chia-Hsin, “Estimation of Sound
Source Number and Directions under a Multisource Reverber-
ant Environment,” EURASIP Journal on Advances in Signal
Processing, vol. 2010, no. 1, pp. 1–14, 2010.

[10] Kreißig, Martin and Annibale, Paolo and Yang, Bin and Raben-
stein, Rudolf, “Joint Consistent Graph Synthesis and Speed of
Sound Estimation for Acoustic Localization in Multi-Source
Reverberant Environments,” in IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, 2013, (submitted paper).

[11] Kreißig, Martin and Yang, Bin, “An Efficient Algorithm for
the Synthesis of Fully Consistent Graphs,” in IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing, 2012, pp. 2653 –
2656.

[12] Yang, Bin and Kreißig, Martin, “An Introduction to Consistent
Graphs and Their Signal Processing Applications,” in IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, 2011,
pp. 2740–2743.

[13] Kreißig, Martin and Yang, Bin, “Efficient Synthesis of Consis-
tent Graphs,” in Proc. EURASIP European Signal Processing
Conf., 2010, pp. 1364–1368.

[14] Yang, Bin, “A Proof For the Bottom-Up Synthesis of Consis-
tent Graphs to Find Matching TDOA Measurements,” in IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, 2013.

[15] Russell, Stuart and Norvig, Peter, Artificial Intelligence: A
modern approach, Pearson Education, 2003.

[16] Bron, Coen and Kerbosch, Joep, “Algorithm 457: Finding All
Cliques of an Undirected Graph,” Commun. ACM, vol. 16, no.
9, pp. 575–577, Sept. 1973.

[17] Beck, Amir and Stoica, Petre and Li, Jian, “Exact and Ap-
proximate Solutions of Source Localization Problems,” IEEE
Trans. on Signal Processing, vol. 56, no. 5, pp. 1770–1778,
2008.

359

