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ABSTRACT
Spherical microphone arrays provide a powerful tool for examining
source localization and direction of arrival (DOA) estimation in the
spherical harmonic domain. In previous work, we have investigated
applying instantaneous independent component analysis (ICA) or
sparse recovery separately in the spherical harmonic domain for DOA
estimation. These algorithms work reasonably well, but rely on
different signal characteristics: namely statistical independence or
the spatial distribution of sources. In this paper, we describe methods
to combine the ICA and sparse recovery algorithms to improve DOA
estimation. The simulation results indicate that combining ICA and
sparse recovery leads to more robust DOA estimation.

Index Terms— Direction of-arrival estimation, Compressed
sensing, Independent component analysis, Spherical microphone
arrays

1. INTRODUCTION

Spherical microphone arrays (SMAs) enable array signal process-
ing such as beamforming and DOA estimation to be performed in
the spherical harmonic domain [1]. In the SMA signal process-
ing framework, the microphone signals are first decomposed into
spherical harmonics or phase modes. We refer to the correspond-
ing signals as Higher-Order Ambisonic (HOA) signals, in keeping
with the spatial sound field literature (see [1–4]). There are several
advantages to using SMAs and HOA domain signal processing, in-
cluding a panoramic spatial analysis and wideband beamforming
properties [5]. Different source localization algorithms have recently
been proposed for spherical microphone arrays [4, 6–11]. Most of
these are steered beamforming-based and subspace localization-based
techniques such as eigenbeam minimum variance distortionless re-
sponse (EB-MVDR) [6, 7], eigenbeam multiple signal classification
(EB-MUSIC) [8] and eigenbeam estimation of signal parameters via
rotational invariance techniques (EB-ESPRIT) [9, 10].

In [4], we demonstrate that applying a linear ICA model in the
HOA domain yields a mixing matrix that can be compared with a
spherical harmonic matrix to provide DOA estimation that is more
robust than eigenbeam MUSIC analysis. In [11], we describe a sparse
recovery (SR) method for DOA estimation of the early echoes in a
reverberant speech signal. We have generally found that DOA estima-
tion using either the ICA or SR algorithm out performs the eigenbeam
MUSIC algorithm for most sound conditions. Still, these algorithms
can fail. The ICA-based algorithm fails to localize sources when they
are not statistically independent and the SR-based algorithm fails
to estimate source directions that are very close to each other. In
this paper, we investigate the benefits of combining the ICA and SR
approaches to provide a more robust source localization algorithm.

This paper is organized as follows. Section 2 describes the sound
field decomposition into spherical harmonics using a SMA. Sections
3 and 4 detail two different methods to combine the ICA and SR
approach to DOA estimation. The simulation results are described in
Section 5. Conclusions are drawn in Section 6.

2. SOUND FIELD ANALYSES IN THE HOA DOMAIN

This section briefly describes microphone array signal processing in
the HOA domain. In the frequency domain, any sound field consisting
of incident sound waves can be modelled as a sum of L spherical
harmonic modes, i.e., we have [4]:

p(r ≤ r̂, θ, φ) ≈
L∑

l=0

l∑
m=−l

iljl(kr)Y
m
l (θ, φ)blm(f)

with r̂ =
2L

ke
, (1)

where p(r, θ, φ) is the acoustic pressure corresponding to the fre-
quency f and at the point with spherical coordinates (r, θ, φ); k is
the wave number given by k = 2πf/c where c denotes the speed of
sound; i is the imaginary unit; jl is the spherical Bessel function of
degree l; Y m

l is the spherical harmonic function of order l and degree
m; blm(f) is the spherical harmonic expansion coefficient for order l
and degree m; and e is the mathematical constant known as Euler’s
number. Equation (1) shows that a sound field can be represented by
a set of frequency-domain coefficients blm(f) . The corresponding
time-domain signals, blm(t), are referred to as HOA signals. In the
case where the sound field consists of V plane waves, the resulting
HOA signals are given by:

b(t) = Ys(t) , (2)

where

• b(t) is the vector of the order-L HOA signals:

b(t) = [b00(t), b1−1(t), b10(t), ..., bLL(t)]
T ,

• Y is the mixing matrix, given by:

Y = [y1,y2, ...,yV ]T ,

• yv is the vector of the spherical harmonic function values :

yv =[Y 0
0 (θv, φv), Y

−1
1 (θv, φv), Y

0
1 (θv, φv)

, Y 1
1 (θv, φv), ..., Y

L
L (θv, φv)]

T ,
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• s(t) is the vector of the plane-wave source signal, sv(t), in-
coming from the angular direction (θv, φv):

s(t) = [s1(t), s2(t), ..., sV (t)]T .

The HOA signals form a linear, instantaneous mixture of the
plane-wave signals. SMAs easily allow the determination of the
HOA signals corresponding to a recorded sound field. There is a
transformation between the microphone array signal domain and the
HOA domain. Letting d(f) be the microphone signals and b(f) the
HOA signals, we have:

d(f) = Ω(f)b(f) ,
b(f) = pinv (Ω(f))d(f) , (3)

where Ω(f) is the transfer matrix between the HOA components of
the sound field and the microphone signals at frequency f , and pinv[·]
is the Moore-Penrose pseudo-inverse matrix operator. In practice,
the transformation is implemented in the time domain using a set
of filters, referred to as HOA encoding filters. For further details
regarding the transformation between the microphone array signal
domain and the HOA domain, please refer to [4].

3. ROBUST DOA ESTIMATION:
ICA FOLLOWED BY SPARSE RECOVERY

The HOA domain signals form a linear and instantaneous mixture of
the incoming plane-wave signals as shown in equation (2). We previ-
ously proposed to localize the source signals using a standard, linear
ICA model [4]. A difficulty with this method is that ICA’s underlying
hypothesis that the incoming plane-wave signals are statistically inde-
pendent may not be entirely valid, e.g., in a reverberant situation in
which two echoes arrive from different directions simultaneously. In
this section, we briefly review the ICA approach to DOA estimation
and then propose a new method, which we refer to as the ICA-SR
method, to improve the results using sparse recovery.

In [4], we apply the standard linear ICA model to the order-L
HOA signals. ICA estimates a vector of separated signals, ŝ(t), and a
mixing matrix, Ĥ, such that:

b(t) = Ĥŝ(t) . (4)

Assuming that the ICA algorithm separated the source signals per-
fectly, the separated signals are proportional to the actual source
signals. In other words, each column of Ĥ, ĥn, is proportional to a
plane-wave direction vector of spherical harmonics yv . We generally
form a large matrix, Ydict, of plane-wave direction vectors. The v-th
column of Ydict provides the spherical harmonic expansion for a pos-
sible plane-wave source located in the direction (θv, φv). Thus, V is
the number of entries in the dictionary of possible plane-wave source
directions and is chosen much larger than possible number of sources.
Putative source directions can be estimated as the columns of Ydict

that are maximally correlated with the columns of Ĥ. One approach
for DOA estimation, which we refer to as the thresholding approach,
is to apply a threshold (typically 0.95) to the correlation values be-
tween the columns of Ĥ and the columns of Ydict. Assuming that the
separated signals have a large correlation with the correct direction in
space, this method works.

When the ICA method fails, however, intuitively each ICA output,
sn, is a combination of a few correlated sources and the corresponding
column, ĥn, of the mixing matrix is actually a mixture of more than
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Fig. 1. The geometry of the SMA and sources for the acoustic
simulation is shown.

one column of the matrix Ydict. Mathematically this can be expressed
as:

ĥn =
∑
v

avnyv (5)

= Ydictan n = 1, .., (L+ 1)2 ,

where an is a V × 1 vector. By solving equation (5) for an, we
can determine the source directions that comprise ĥn. The difficulty
is that equation (5) is an under-determined system. There are an
infinite number of solutions and the inverse problem is ill-posed.
Assuming that ĥn is a sum of only a few directions, the vector an

will be sparse with a few non-zero elements (i.e., the avn is non-zero
if there is a signal in the direction (θv, φv)). Thus in the new ICA-SR
method, we propose to impose a sparsity constraint on the solution
an. Mathematically we formulate the sparse recovery problem as:

minimize ‖an‖1
subject to ĥn = Ydictan , (6)

where ‖an‖1 is the L1-norm of an. The iteratively re-weighted least
square (IRLS) minimization [12] is used for solving equation (6).
Each ĥn consists spatial information from some or all sources. We
solve equation (6) for each column of the mixing matrix and then form
the single vector a =

∑
n an. If the number of sources, P , is known,

we select the directions that correspond to the P highest values in
vector a as the putative source directions. If the number of sources
is unknown, a threshold value (typically 0.85) is set such that the
putative source directions are chosen as the directions corresponding
to elements in the vector, a, that are above the threshold.

3.1. Simulation

To evaluate the ICA-SR DOA estimation method described above,
we consider two sources in a reverberant room and vary the cross-
correlation between these two sources. By varying the cross-
correlation, we modify the degree of statistical independence between
the two sources. We expect that when the cross-correlation is high,
that DOA estimation using ICA alone should fail, but that the ICA-SR
method may still work. We compute the cross-correlation, ρ, of two
sources as:

ρ = E{s1s2},
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Fig. 2. The error in the estimated angular position as a function of
the cross-correlation is shown for both the ICA-only and ICA-SR
algorithms. The top and bottom figures corresponds to the source
positions (0, 0) and (−30,−140), respectively.

where E denotes the statistical expectation operator. Two zero mean
sources s1 and s2 are said to be uncorrelated, if their cross-correlation
value is zero, ρ = 0. For the simulations, we vary ρ evenly in ten
steps between 0 and 1.

Other details for the simulations are as follows. The SMA used
consists of two concentric spherical arrays of 12 omnidirectional
microphones. There are 12 microphones located on the surface of
a rigid sphere with a radius of 3 cm; the other 12 microphones are
located on the surface of an open sphere with a radius of 15 cm.
The sound sources are place in a room with size 14 m×10 m×3 m.
The SMA is located at (7 m, 4 m, 1.3 m) relative to the corner of
the room. The two sources are located at a distance of two meters
from the microphone array at the angular positions of s1: (0, 0) and
s2 : (−30,−140), respectively. The configuration of the sources
relative to the SMA are shown in Fig. 1.

The reverberation time of the room, RT60, is approximately
450 ms and the signal-to-reverberation ratio (SRR) is about −3.8 dB.
The reverberant impulse responses between the sources and the mi-
crophone array sensors have been calculated using MCROOMSIM,
a multichannel room acoustics simulator [13]. The source signals
are speech signals of approximately 4 s in duration with a sampling
frequency of 16 kHz and the plane-wave dictionary comprises 2562
directions which were evenly distributed over the sphere, resulting in
an angular resolution of approximately 4◦. We band-pass filter the
order-2 HOA signals prior to applying ICA and SR so that they con-
tain only the frequencies where the HOA signals can be considered as
instantaneous mixtures (for more details see [4]). The ICA algorithm
is applied to signals using FastICA [14], an Independent Component
Analysis package for the Matlab environment.

The DOA estimation results are shown in Fig. 2. The difference
between the true and estimated angular position is plotted for both the
ICA-only and ICA-SR methods as a function of the cross-correlation,
ρ, between the two sources. As shown in Fig. 2, the DOA estima-
tion for the ICA-SR algorithm is more robust than for the ICA-only
algorithm as ρ increases. In particular, note that when ρ > 0.5,
the ICA-only method fails to find two sources, whereas the ICA-SR
method can still localize two sources when ρ = 1.0 – because it
includes spatial information via the sparse recovery.

4. ROBUST DOA ESTIMATION:
SPARSE RECOVERY FOLLOWED BY ICA

In this section, we describe a complementary approach to that pre-
sented in Section 3. Previously, we applied the ICA algorithm and
followed it with sparse recovery. We now want to examine what hap-
pens when we flip the order and first apply sparse recovery followed
by ICA. In [11], we presented a DOA estimation algorithm where
the source signals are localized by applying an SR algorithm to solve
equation (2). In that work, we first rewrite equation (2) to make the
use of time windows (length N ) explicit:

B = YdictS , (7)

where

S = [s(t), s(t+ 1), · · · , s(t+N − 1)] ,
B = [b(t),b(t+ 1), · · · ,b(t+N − 1)] .

We then assume that the sound field can be explained by a minimum
number of plane wave sources. In other words, we assume in equa-
tion (7) that most of the rows of S can be taken as zero because
there are no signals in those directions. We then formulate the DOA
estimation as the following SR problem:

minimize ‖S‖12
subject to B = YdictS , (8)

where ‖S‖12 is the l12 norm of S which is defined as:

‖S‖12 =

V∑
v=1

√√√√ N∑
n=1

sv(t+ n− 1)2 .

We solve the SR problem using the IRLS algorithm and apply regular-
ization to achieve better results. The source directions are estimated
as those directions corresponding to the most energetic rows in S.

Although the SR DOA method can achieve surprising super-
resolution acoustic imaging, there are still limits in resolution that
arise when the sources are near to each other. In this work, we
examine whether we can improve results by applying ICA to the
outputs of the sparse recovery approach. We refer to this approach
as the SR-ICA method. To explain the SR-ICA method, we begin by
supposing we have applied the SR DOA method and found a k-sparse
solution Ssr to the SR problem (8). The number k is typically chosen
greater than the number of sources. Within the SR framework, this
means we solve for the matrix W such that: WB = Ssr, where Ssr

has only k rows. The idea is to now apply ICA to the k signals in Ssr

and see whether we can improve our solution. Applying ICA to Ssr

gives:
WB = Ssr = GSica , (9)

where G is the ICA mixing matrix. Intuitively, we expect the mixing
matrix G to be close to the identity matrix for most situations. How-
ever, when two statistically independent sources cannot be resolved
by the SR method, ICA may still have the chance to separate the
sources. To examine this issue, we can compare the acoustic image
maps generated from the derived Y-matrices:

Ysr = pinv(W)

Yica = pinv(W)G (10)

The acoustic image maps are generated from the derived Y-matrices
by correlating them with the plane-wave dictionary Ydict as described
in the second paragraph of Section 3.
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(a): SR method

(b): SR-ICA method

(c): ICA method

Fig. 3. An acoustic image map is shown for (a) the SR-only method,
(b) the SR-ICA method, and (c) the ICA-only method.

Fig. 3 shows some simulation results comparing the SR method
with the SR-ICA method for two sources s1 and s3 positioned close
to each other at (0, 0) and (0, 16), respectively (see Fig. 1). We use
a time window of length N = 64000 which corresponds to 4 s and
we set k = 6. Other details for the simulations are as described in
Section 3.1. Fig. 3 shows the acoustic image maps (i.e., the acoustic
energy as a function of the direction in space) for the SR-only and
SR-ICA algorithms. As shown in Fig. (3-a), there is only one peak
– meaning the SR-based algorithm fails to estimate position of two
sources. However, the SR-ICA method finds the two sources as shown
in Fig. (3-b). It is interesting to consider the results for the ICA-only
algorithm which are shown in Fig. (3-c). We see that the ICA-only
method identifies too many source positions and finds four peaks.
Thus, the SR-ICA method achieves a more robust DOA estimation.

5. CONCLUSION

In this paper, we describe methods for combining the ICA and sparse
recovery algorithms to achieve more robust source localization using
a spherical microphone array. The ICA-only and SR-only algorithms
estimate the source positions based on statistical and spatial infor-
mation, respectively. By combining these two algorithms, we are
able to incorporate both statistical and spatial information for source
localization. Results show that the ICA-SR and SR-ICA methods
can outperform the ICA-only and SR-only algorithms and in some
situations can even estimate the sources positions when the other
algorithms fail completely. In future work, we will try to unify the
two criteria of independence and sparsity in spatial domain to obtain
a single algorithm for both source separation and localization.
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