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ABSTRACT

A wireless acoustic sensor network is envisaged that is composed

of distributed nodes each with several microphones. The goal of

each node is to perform signal enhancement, by means of a multi-

channel Wiener filter (MWF), in particular to produce an estimate

of a desired speech signal. In order to reduce the number of broad-

cast signals between the nodes, the distributed adaptive node-specific

signal estimation (DANSE) algorithm is employed. When each node

broadcasts only linearly compressed versions of its microphone sig-

nals, the DANSE algorithm still converges as if all uncompressed

microphone signals were broadcast. Due to the iterative and sta-

tistical nature of the DANSE algorithm several blocks of data are

needed before a node can update its node-specific parameters lead-

ing to poor tracking performance. In this paper a sub-layer algorithm

is presented, that operates under the primary layer DANSE algo-

rithm, which allows nodes to update their parameters during every

new block of data and is shown to improve the tracking performance

in time-varying environments.

Index Terms— Wireless acoustic sensor networks, distributed

multi-channel Wiener filtering

1. INTRODUCTION

Speech enhancement algorithms have been shown to benefit from

the use of multiple microphones compared to those using single mi-

crophone techniques [1, 2] . This is due, in part, to the added spatial

information from the microphones that are included in the estimation

[3]. In many situations the data from the microphones are collected

at a single point or fusion center (FC) where they are also processed

in order to produce an enhanced version of a speech signal.

However, with the current trend of miniaturization, many elec-

tronic devices come equipped with microphones as well as basic pro-

cessing capabilities [4, 5, 6]. Therefore instead of relying on a FC,

the data can be processed in a distributed fashion, i.e., every device,

or node, can perform local speech enhancement by incorporating

(pre-processed) microphone signals from other nodes [7]. This type
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of collaborative processing for speech enhancement forms the basis

of a so called wireless acoustic sensor network (WASN).

In this paper, a WASN is envisaged that contains a set of nodes

where each node has a local microphone array. Each microphone

observes a speech signal that has been corrupted by additive noise.

The goal of each node is then to estimate a desired node-specific

speech signal in such a way as to reduce the amount of noise and

improve the speech intelligibility.

In a centralized scenario, it is assumed that each node broad-

casts all of its microphone signals to every other node in the WASN.

However, this type of broadcast policy becomes infeasible when the

number of microphones is large. We therefore look for a way to re-

duce the amount of transmitted signals while still being able to reach

the centralized solution.

To this end, we use the distributed adaptive node-specific sig-

nal estimation (DANSE) algorithm [8, 9] where each node broad-

casts a linearly compressed version of its microphone signals. The

DANSE algorithm iteratively updates the node-specific parameters

that are used for speech enhancement and is shown to converge to

the centralized solution, i.e., as if every node broadcasts all of its

microphone signals.

In [8] the DANSE algorithm was introduced for the case of a

fully-connected network where the nodes update their parameters

sequentially. In [10] a relaxed simultaneous update version of the

DANSE algorithm (rS-DANSE) was presented in which the nodes

update their parameters simultaneously which was shown to improve

the convergence of the system.

The rS-DANSE was applied specifically to a WASN in [9] where

a robust version was introduced to achieve better noise reduction

performance. In [11] a weighted overlap add method was used to

reduce the I/O delay of the system and a forgetting factor was used

to incorporate longer time averaged statistics.

However due to the iterative and statistical nature of the algo-

rithm, several blocks of data are needed before a node can update its

node-specific parameters. This subsequent delay in successive up-

dates may lead to poor tracking performance, especially in highly

time-varying environments. We therefore look for a way to enable

nodes to estimate their node-specific signals for every new block of

data.

Relation to Prior Work: The aim of this paper is to introduce

a sub-layer algorithm to a WASN network that has the rS-DANSE

algorithm in place, in order to improve the tracking performance

in time-varying environments. This additional update will slightly

increase the computational complexity of each node but allows the

nodes to update estimates to their node-specific signals during every
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instance when new data is received. This allows nodes to adapt to the

environment much faster when compared to the previously presented

versions of the DANSE algorithm in which several blocks of data are

needed before an update can occur.

This paper is organized as follows. Section 2 describes the sig-

nal model as well as an optimal filtering in a linear minimum mean

squared error (LMMSE) sense. The DANSE algorithm is reviewed

in Section 3 along with rS-DANSE which allows for simultaneously

updating of the node-specific parameters in the WASN. In Section

4 the sub-layer algorithm is presented that allows nodes to estimate

their node-specific desired signal at every new block of data. Finally

simulations comparing the various versions of the DANSE algorithm

are presented in Section 5 with conclusions in Section 6.

2. SIGNAL MODEL AND MULTI-CHANNEL WIENER

FILTERING

2.1. Signal Model

We envisage a WASN with K nodes each with Mk microphones.

Each microphone signal of node k is given in the frequency domain

as

ym,k(ω) = xm,k(ω) + nm,k(ω), m = 1 . . . Mk (1)

where xm,k is the desired speech component and nm,k is an additive

noise component that is uncorrelated to the desired speech. For the

sake of brevity we omit the ω variable for the remainder of the paper

bearing in mind that the operations occur in the short-time Fourier

transform (STFT) domain. We define an Mk-dimensional stacked

vector containing all of the microphone signals of node k as

yk = [y1,k . . . yMk,k]T (2)

and a stacked M-dimensional vector that contains all of the node’s

microphone signals as

y = [yT
1 . . .y

T
K ]T (3)

where

M =

K
X

k=1

Mk. (4)

The network-wide M-channel signal vector may also be given as

y = x + n where x and n are defined similarly to (3).

We assume a single desired source signal, s, where the desired

speech component of each microphone can be given as

xm,k = am,ks (5)

where am,k is a complex scalar that is representative of the acoustic

transfer function from the speech source to the mth microphone of

node k. The M-channel desired speech component vector can there-

fore be written as

x = as (6)

where a is a steering vector containing all the acoustic transfer func-

tions at a particular frequency.

2.2. Multi-channel Wiener filtering

For the centralized case we assume that each node broadcasts an

uncompressed version of its microphone signals to every other node.

Each node therefore has access to the full M-channel signal vector y.

The goal of each node is to estimate a node-specific desired speech

signal, dk, by a filtered version of its received signals, d̄k = wH
k y,

where the superscript H represents the conjugate transpose.

The node-specific filter, wk, is found by minimizing the

LMMSE between the node-specific desired speech signal and the

filtered version of its received signals, i.e.,

ŵk = arg min
wk

E{|dk − w
H
k y|2} (7)

where E{.} denotes the expectation operator. Without loss of gen-

erality (w.l.o.g.) we assume that the node-specific desired speech

signal is the speech component in the first microphone of the node,

dk = xk,1.

The node-specific solution to (7) is given by the well known

multi-channel Wiener filter [12]

ŵk = R
−1
yyRxxek (8)

where Ryy = E{yyH}, Rxx = E{xxH} and ek is a vector with

a single entry equal to 1 and all other equal to 0, which selects the

column of Rxx that corresponds to the first microphone of node k.

Note that one such filter should be computed for each frequency bin.

2.3. Estimation of Signal Statistics

In speech applications it is often assumed that a voice activity detec-

tor (VAD) is able to distinguish between frames that contain noise

and those that contain speech+noise. The frames are then combined

with time averaged statistics by means of a long-term forgetting fac-

tor 0 < λ < 1, e.g., the speech+noise correlation matrix is updated

as,

Ryy[t] = λRyy[t − 1] + (1 − λ)y[t]y[t]H (9)

where t is the STFT frame index and assuming the sample y[t] con-

tains speech+noise. The noise correlation matrix, Rnn = E{nnH},

is updated in a similar fashion during frames where there is noise

only.

Since it is assumed that the speech and noise are statistically in-

dependent, the speech correlation matrix is estimated by subtracting

the noise+speech correlation matrix by the noise correlation matrix,

i.e.,

Rxx = Ryy − Rnn. (10)

3. REVIEW OF THE DANSE ALGORITHM

In Section 2.2 a centralized scenario was assumed where each node

broadcasts its full Mk-dimensional signal to all other nodes. How-

ever this requires a substantial amount of communication bandwidth

especially as the number of microphones grows. We therefore look

to a way to estimate the desired speech signal of a node without each

node having to broadcast its full Mk-signal and still reach the same

solution as in the centralized case. This can be accomplished by us-

ing the DANSE algorithm. In this section we outline the DANSE al-

gorithm and the reader is referred to [8],[10] for convergence proofs

which will only be briefly stated here for convenience.

In the DANSE algorithm each node broadcasts to all other

nodes a linearly compressed version of its microphone signals,

zk = wH
kkyk where wkk is yet to be defined. We define a stacked

vector of all linearly compressed signals as z = [z1 . . . zK ], and a

vector z
−k which is equal to z with zk omitted. Each node now

collects its own Mk microphone signals as well as the other z
−k

broadcast signals from other nodes and places them in a stacked

vector,

ỹk =

»

yk

z
−k

–

(11)
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where the bar symbol in the vector differentiates between the nodes

local signals and those received by other nodes. Node k does not

look to decompress the received signal z
−k but instead applies a

scaling parameter to each of the received signals where the scal-

ing parameters, gk1, . . . , gk,k−1, gk,k+1, . . . , gkK , are placed in a

stacked vector gk−k.

At every iteration i in the DANSE algorithm, one node will up-

date its node-specific parameters, wkk and gk−k, in a round-robin

fashion by solving the local node-specific LMMSE problem,

»

wi+1

kk

gi+1

k−k

–

= arg min
wkk,gk−k

E

(

˛

˛

˛

˛

dk − [wkk|gk−k]H
»

yk

z
−k

–

˛

˛

˛

˛

2
)

(12)

which has the solution

»

wi+1

kk

gi+1

k−k

–

= R
−1

ỹkỹk
Rx̃kx̃k

ẽk (13)

where Rỹkỹk
= E{ỹkỹ

H
k }, Rx̃kx̃k

= E{x̃kx̃
H
k } which is found

in the same manner as (10), x̃k is defined similarly to (11) and ẽk is

a vector with a single entry equal to 1 and all other equal to 0, which

selects the column of Rx̃kx̃k
that corresponds to the first microphone

of node k. The estimated node-specific desired signal, d̄k, is then

given as

d̄k = [wi+1

kk |gi+1

k−k]H ỹk. (14)

In [8] it has been shown that in a fully connected network and under

the assumption of a single speech source given in (6) the LMMSE of

each node converges to that of the centralized case.

3.1. rS-DANSE

Note that when a node updates its node-specific filter, its zk signal

changes. Therefore the next node update that takes place must allow

sufficient time to pass between iterations, i, to reliably estimate the

correlation coefficients needed for the calculation of (13). In a net-

work with a large number of nodes or one that has highly varying

statistics this sequential updating scheme may exhibit poor tracking

performance. Therefore in [10] a method to allow the nodes to up-

date their node-specific parameters simultaneously was proposed.

However it was shown in [10] that if nodes update simultane-

ously the network may exhibit limit cycles and be unable to con-

verge. In order to avoid this, a relaxed update is performed at each

node, which is referred to as the relaxed simultaneous DANSE (rS-

DANSE) algorithm.

In the rS-DANSE algorithm the nodes simultaneously find the

solution to their node-specific LMMSE problem which is now given

as
»

w
temp

kk

gi+1

k−k

–

= R
−1

ỹkỹk
Rx̃kx̃k

ek. (15)

where w
temp

kk contains the local filter coefficients specific to a node.

In order to avoid limit cycles, the new node-specific filters are up-

dated as a convex combination of the actual previous filter values

and those given in (15), i.e.,

w
i+1

kk = (1 − α)wi
kk + αw

temp

kk (16)

where α = (0, 1] is a predetermined relaxation constant. It has been

empirically observed that a value of α = 0.5 is a good choice to

avoid suboptimal limit cycle behavior [10, 11]. The node-specific

desired signal estimate is again given by (14). Although each node

can update its node-specific parameters simultaneously the statistics

of the zk signals change with each new iteration. Therefore, as in

y2 d̄2

d̄3
y3

y1 d̄1+

+

+

z2

z3

z1

w1INT

w1EXT

w2INT

w2EXT

w3INT

w3EXT

g12

g13

g21

g23

g31

g32

Fig. 1. The rS-DANSE algorithm with K = 3 nodes which uses an

internal and external filter to improve tracking performance.

the case with the sequentially updated DANSE algorithm, the rS-

DANSE algorithm must still allow sufficient time to pass between

iterations i to reliably estimate the correlation coefficients needed

for the calculation of (15).

4. SUB-LAYER ALGORITHM FOR rS-DANSE IN

TIME-VARYING ENVIRONMENTS

In the DANSE and rS-DANSE algorithm presented in Section 3 suf-

ficient time is required to pass between iterations i to reliably esti-

mate the correlation coefficients. In time-varying environments this

time between subsequent iterations may affect the tracking perfor-

mance of the algorithm. Furthermore, the estimated statistics imme-

diately become obsolete.

We therefore propose a way for each node to update its estimated

node-specific desired signal at every new frame while still preserving

the converge properties of the DANSE and rS-DANSE algorithm.

Note that wkk acts both as part of the estimator filter wk (to estimate

d̄k in (14)) as well as the compression vector to generate zk from

yk. The proposed modification divides the node-specific estimator

filter, wkk into an internal filter, wkkINT
, which is only used for the

local estimation of d̄k and an external filter, wkkEXT
, which is applied

to the local microphone signals to generate the broadcast signal zk.

The DANSE algorithm with this modification is depicted in Figure

1 where the network has K = 3 nodes.

In every frame, each node simultaneously updates its internal

filter
»

wkkINT

gk−k

–

= R
−1

ỹkỹk
Rx̃kx̃k

ẽk (17)

where Rỹkỹk
and Rx̃kx̃k

are updated according to (9) and (10) re-

spectively. The estimated node-specific desired signal is given as

d̄k = [wkkINT
|gk−k]H ỹk. (18)

The external filter, wkkEXT
, is only updated once every B frames

using the following (relaxed) update rule,

w
i+1

kkEXT
= (1 − α)wi

kkEXT
+ αwkkINT

(19)

where i is equivalent to a DANSE update of the node-specific pa-

rameters in the sequential and rS-DANSE algorithms (once every

B frames). In order to avoid limit cycles that may occur in simul-

taneous updating we also incorporate a relaxed update similar to

rS-DANSE. Table 1 summarizes rS-DANSE with the sub-layer al-

gorithm. It should be noted that in rS-DANSE of [10] the internal

and external filters are equivalent wkkINT
= wkkEXT

but must col-

lect several frames of data before the node-specific parameters can

be updated.
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Table 1. rS-DANSE with the sub-layer algorithm

1. Initialize wkk and gk−k randomly, ∀k ∈ K

2. Each node ∀k ∈ K performs the following update simulta-

neously at each frame (frame index t)

• Collect observations yk[t]

• Compute zk[t] = wH
kkEXT

yk[t] and broadcast to other

nodes

• Collect broadcast signals of other nodes, z
−k[t]

• Update estimates of Rỹkỹk
and Rx̃kx̃k

using ỹ[t]

• Update node-specific parameters
»

wkkINT

gk−k

–

= (Rỹkỹk
)−1Rx̃kx̃k

ẽk

• Compute estimated node-specific desired signal

d̄k[t] = [wkkINT
|gk−k]H ỹk[t]

3. if t mod B = 0, update broadcast filter

wi+1

kkEXT
= (1 − α)wi

kkEXT
+ αwkkINT

.

4. return to 2.

5. SIMULATIONS

In order to assess the performance of rS-DANSE with the sub-layer

algorithm, an acoustic scenario was simulated as depicted in Figure

2. The dimensions of the room are 5x5x5 m, with a reflection coef-

ficient of 0.2 used for all surfaces. There is a babble and white noise

source present. Uncorrelated white noise that is 10% of the average

power of the speech and noise sources is added to each microphone

observation and is representative of sensor noise. The speaker, indi-

cated by the �, moves throughout the scenario by a path indicated

by the dashed line

There are 7 nodes each having 3 microphones. A DFT block

length of L=256 is used along with the weighted overlap add tech-

nique presented in [11]. A sampling frequency of fs = 8000 is used

for all signals. A forgetting factor of λ = 0.992 is used to update the

speech+noise and noise correlation matrices where a perfect VAD is

assumed to isolate VAD errors. An α = 0.5 is used to update filter

coefficients of the rS-DANSE algorithm and the wkkEXT
coefficients

of rS-DANSE with the sub-layer algorithm.

In the acoustic scenario the speaker is stationary for the first 20

seconds of the simulation to allow sufficient time to populate the

statistics. The speaker follows the indicated path 2 times at 0.2 and

0.5 m/s. At the starting position and at the points indicated by ◦ the

speaker remains stationary for 10 seconds. An interval of 2 seconds

passes before each DANSE update, or the external filters are updated

in rS-DANSE with the sub-layer algorithm.

Figure 3 shows the performance in terms of the difference for

the input and output signal-to-noise ratio (∆SNRout) between the se-

quential DANSE, rS-DANSE, and rS-DANSE with the sub-layer al-

gorithm. The vertical solid lines indicate the speaker starts moving

and the dashed vertical lines indicate the speaker has stopped. The

values for ∆SNRout are averaged over 2 second intervals.

The sequential DANSE algorithm performs the worst because

only one node updates in each DANSE iteration. The tracking

performance is greatly improved by the implementation of the rS-

DANSE algorithm which has an increase of ∆SNRout ≈ 3dB on

average when compared to the DANSE algorithm. The rS-DANSE

0 1 2 3 4 5
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5

Speech

Babble

White

Fig. 2. Simulated Room Environment with K = 7 nodes each with

3 microphones, a babble and white noise source and a moving target

speaker.
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Fig. 3. Tracking performance of output SNR comparing the sequen-

tial DANSE, rS-DANSE, and rS-DANSE with the sub-layer algo-

rithm.

with the sub-layer algorithm is able to track the speaker better while

further improving the ∆SNRout by 0.8dB on average when compared

to that of the original rS-DANSE algorithm.

It should be noted that the large difference between the central-

ized and distributed simulations can be attributed to many factors in-

cluding the assumed perfect estimation of the Rỹkỹk
matrix which

is not guaranteed even in stationary scenarios. While using a longer

forgetting factor may help alleviate these estimation errors it may

adversely affect the tracking performance of the algorithm.

6. CONCLUSION

In order to increase the tracking performance of the DANSE al-

gorithm, a modification has been presented that divides the node-

specific filter into an internal and external portion. This allows for

nodes to update simultaneously in each frame instead of a larger up-

date period that is typical for the sequential DANSE and rS-DANSE

algorithms. Simulations have shown, that compared to other im-

plementations of DANSE, the modified algorithm exhibits improved

tracking performance which leads to further improvement in the out-

put SNR of the nodes.

339



7. REFERENCES

[1] J.G. Desloge, W.M. Rabinowitz, and P.M. Zurek,

“Microphone-array hearing aids with binaural output. I.

Fixed-processing systems,” IEEE Trans. on Audio, Speech,

and Language Processing, vol. 5, no. 6, pp. 529–542, Nov.

1997.

[2] D.P. Welker, J.E. Greenberg, J.G. Desloge, and P.M. Zurek,

“Microphone-array hearing aids with binaural output. II. A

two-microphone adaptive system,” IEEE Trans. on Audio,

Speech, and Language Processing, vol. 5, no. 6, pp. 543 –551,

Nov. 1997.

[3] J. Chen, J. Benesty, Huang Y., and S. Doclo, “New insights

into the noise reduction wiener filter,” IEEE Trans. on Audio,

Speech, and Language Processing, vol. 14, no. 4, pp. 1218 –

1234, Jul. 2006.

[4] L. Gavrilovska and R. Prasad, Ad-Hoc Networking Towards

Seamless Communications (Signals and Communication Tech-

nology), Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006.

[5] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instru-

menting the world with wireless sensor networks,” in Proc.

IEEE Int. Conf. on Acoustics, Speech and Signal Processing

(ICASSP’01), 2001, vol. 4, pp. 2033 –2036 vol.4.

[6] I.F. Akyildiz, T. Melodia, and K.R. Chowdury, “Wireless mul-

timedia sensor networks: A survey,” IEEE Wireless Communi-

cations, vol. 14, no. 6, pp. 32–39, Dec. 2007.

[7] S. Golan, S. Gannot, and I. Cohen, “A reduced bandwidth

binaural MVDR beamformer,” in Proc. of the International

Workshop on Acoustic Echo and Noise Control (IWAENC), Tel

Aviv, Israel, Aug. 2010.

[8] A. Bertrand and M. Moonen, “Distributed adaptive node-

specific signal estimation in fully connected sensor networks

– part I: Sequential node updating,” IEEE Trans. Signal Pro-

cess., vol. 58, no. 10, pp. 5277–5291, Oct. 2010.

[9] A. Bertrand and M. Moonen, “Robust distributed noise re-

duction in hearing aids with external acoustic sensor nodes,”

EURASIP Journal on Advances in Signal Processing, vol.

2009, pp. 14, Oct. 2009.

[10] A. Bertrand and M. Moonen, “Distributed adaptive node-

specific signal estimation in fully connected sensor networks –

part II: Simultaneous and asynchronous node updating,” IEEE

Trans. Signal Process., vol. 58, no. 10, pp. 5292–5306, Oct.

2010.

[11] A. Bertrand, J. Callebaut, and M. Moonen, “Adaptive dis-

tributed noise reduction for speech enhancement in wireless

acoustic sensor networks,” in Proc. of the International Work-

shop on Acoustic Echo and Noise Control (IWAENC), Tel Aviv,

Israel, Aug. 2010.

[12] S. Doclo and M. Moonen, “GSVD-based optimal filtering

for single and multimicrophone speech enhancement,” IEEE

Trans. on Signal Processing, vol. 50, no. 9, pp. 2230 – 2244,

Sep. 2002.

340


