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ABSTRACT

With a view to the suppression of unwanted sound, a planar
array of loudspeakers is used to recreate a sound field in a
nearby cubic listening area. Using free-space propagation, the
formulation for selecting optimal locations of loudspeakers is
developed so that numerical experiments can give a feel for
the best possible suppression. First, to provide a benchmark,
a target Acoustic Transfer Function (ATF) matrix is found that
minimizes the reproduction error for a number of uniformly
placed loudspeakers. Then the same number of loudspeak-
ers is positioned by selecting from densely placed candidates
so that their ATF matrix best approximates the target sound
field. For recreating the field of a point source located in the
direction of the array, the loudspeaker array with selected lo-
cations is shown to improve the reproduction accuracy over a
reasonable bandwidth.

Index Terms— Active sound cancellation, sound field re-
production, noise cancellation, loudspeaker arrays

1. INTRODUCTION

Sound field reproduction is the process of synthesizing a
sound field in a region of interest - the listening area - using
an array of loudspeakers. This synthesis can be either for cre-
ating a spatial sound effect, or for creating a sound-suppressed
volume by canceling the sound field. In the context of noise
cancellation and adaptive algorithms, the term “desired field”
is used for the negative of the undesired field which is to be
canceled, so it is also referred to here as a target field.

Previous work on sound field reproduction falls under
three terminologies [1]: wave field synthesis (WFS), higher
order ambisonics (HOA), and direct approximation methods.
WFS is based on the Kirchoff-Helmholtz integral equation,
which states that the pressure in an enclosed volume is com-
pletely determined by the velocity and pressure on the surface
enclosing that volume. In a limiting form, this principle pre-
dicts that a sound field sourced from a half space can be
recreated (and therefore also canceled) by the pressure and
velocity on the half space planar boundary plane [2, 3, 4].
In HOA methods, the desired, or target field, is expressed in
spherical harmonics to facilitate finding the phase and mag-
nitude for the loudspeakers [4, 5]. In [6], HOA was used
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to recreate a plane wave in a sphere of radius 0.2 m using
an array of loudspeakers located on a sphere of radius of 1
m. In [7], a plane wave was recreated in a sphere of radius
0.11 m using loudspeakers on three surrounding rings, the
largest of which was 2 m. Direct approximation methods
minimize the energy of the approximation error between the
synthesized field and the desired field at a set of sampling
points. In [8] the Least Squares (LS) criterion is employed
to recreate a plane wave within a square of length of 1 m by
placing loudspeakers along the perimeter of a 7.5 m ×6.4 m
rectangle. In [1], the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) was employed to recreate a spherical
wave within circular and amphitheatrical surfaces. In [9],
first, the regularization factor is found using singular value
decomposition (SVD) of the ATF matrix, and then a spherical
wave is recreated within a circular surface using a circular
array of loudspeakers.

Most of the above papers use modeling based on free-
space propagation, and omnidirectional loudspeakers and
field samplers. In this paper the same situation applies be-
cause there is interest in the best possible performance avail-
able from idealized configurations, except for being spatially
under-sampled. In real-world conditions, noise cancellation
cannot be expected to perform as well as that modeled for
free space.

The contribution of this paper is to use direct approxima-
tion for optimizing the discretized placement of loudspeak-
ers, which has not been considered in previous work. First,
the SVD of the ATF matrix is performed on uniform loud-
speaker placement. Then, the entries of the ATF matrix are
modified in order to decrease the approximation error and the
total loudspeaker power simultaneously. This offers a bench-
mark performance for the number of loudspeakers and the
configuration. Finally, the loudspeakers are relocated to best
match the modified ATF matrix, and the LS solution of the
new structure is found. The relocated loudspeakers outper-
form the uniform placement in both the approximation error
and power.

2. PROPOSED METHOD

Let s be the vector containing complex amplitudes of N loud-
speakers (s = [s1, s2, ...sN ]

T
), pmax ≥ ||s||2 be the maxi-

mum normalized power of the loudspeakers, pdes be the vec-
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tor containing the complex values of the desired sound field at
M > N sampling points, and p be the corresponding values
of the synthesized field at the same sampling points. Direct
least squares approximation attempts to solve (min ||pdes −
p||2 s.t. ||s||2 ≤ pmax), usually by minimizing

J = ||pdes − p||2 + γ||s||2 (1)

where γ is the regularization parameter. The monochromatic
field from the loudspeakers at the sampling points is given by

p = Gs (2)

where the ATF matrix G is M × N , and its (m,n)-th entry,
Gm,n, is the ATF of the n-th loudspeaker at the m-th sam-
pling point. For example, assuming free space propagation,
the ATF at point ym from an omnidirectional loudspeaker lo-
cated at xn is

Gm,n =
1

4π
·
e−jk||xn−ym||

||xn − ym||
. (3)

The major assumption of free space propagation allows
simplistic reverberation modeling, and incorporation of the
patterns of the loudspeakers and sampling microphones in (3),
in turn allowing expressions such as (2), for fields, to also
represent the signals for processing.

The SVD of the ATF matrix is G = UΣVH , where U

and V are, respectively, M ×M and N ×N unitary matrices,
and Σ is a M × N diagonal matrix containing N ordered
singular values σ1 ≥ σ2 ≥ ... ≥ σN of G. According to [9],
the approximation error and the loudspeaker power resulting
from solving (1) are, in terms of the entries of SVD matrices,

||pdes − p||2 =
N

∑

n=1

γ2

(σ2
n + γ)2

|cn|
2 +

M
∑

n=N+1

|cn|
2, (4)

||s||2 =

N
∑

n=1

σ2
n

(σ2
n + γ)2

|cn|
2, (5)

where cn = uH
n pdes is the projection of pdes onto the n-th

column of U. Both the approximation error and the loud-
speaker power can be reduced if the |cn|’s are decreased.
Since |cn| is the magnitude of the projection of pdes onto
the n-th column of U, we will attempt to minimize the |cn|’s
by designing the matrix U appropriately. This new matrix
(Uideal) will in turn generate new ATF matrix G, which
becomes Gideal, below.

Suppose we pick the m′-th column of Uideal, denoted
uideal

m′ , and make it parallel with pdes, then

uideal
m′ = pdes/||pdes||,

so |cm′ | = |(uideal
m′ )Hpdes| = ||pdes||. Other columns of

Uideal must be unit vectors orthogonal to uideal
m′ , so they lie in

the (M − 1)-dimensional nullspace of uideal
m′ . With all uideal

q

with q 6= m′ orthogonal to pdes, we get |cq| = 0 for q 6= m′,
so (4) and (5) simplify to

||pdes − p||2 =

{

γ2

(σ2

m
′
+γ)2

||pdes||2 if m′ ≤ N ,

||pdes||2 if m′ > N .
(6)

||s||2 =

{

σ2

m
′

(σ2

m
′
+γ)2

||pdes||2 if m′ ≤ N ,

0 if m′ > N .
(7)

The question now is – which m′ should we pick? Since
γ2/(σ2

m′ + γ)2 < 1, we see that the approximation error in
(6) will be minimized if we pick m′ ≤ N . Further, since
σ1 is the largest singular value, then ||pdes||2γ2/(σ2

1 + γ)2

is the smallest error we can achieve. Hence, we pick m′ =
1, i.e., uideal

1 = pdes/||pdes||. This defines uideal
q for q >

1 as an orthonormal basis of the nullspace of uideal
1 . This

arrangement of uideal’s make a new matrix Uideal with a new
ATF matrix

Gideal = UidealΣVH . (8)

Gideal has the same singular values as G.
Using Gideal, the approximation error and the total loud-

speaker power are given by (6) and (7), respectively, with
m′ = 1. There are options for attempting to realize this ATF
matrix, and the choice of interest is to fix the sampling points
and approximate the “ideal” ATF matrix in (8) by adjusting
the locations of loudspeakers. In practice, this may be from a
screen of reconfigurable, densely spaced transducers (where
power consumption is important), or set up as a fixed config-
uration for a fixed, targeted sound field.

3. LOUDSPEAKER PLACEMENT

N loudspeaker locations xn are sought that minimize the ap-
proximation error at M sampling points ym. The following
algorithm selects discetized locations.

Step 1: Distribute N loudspeakers uniformly across the
planar square region (loudspeaker region) shown in Fig. 1.

Step 2: Compute the ATF matrix G for the structure in
Step 1, and modify it as explained in the previous section to
create Gideal. Let gideal

n be the n-th column of Gideal. This
M -dimensional vector contains the ATF of the n-th loud-
speaker at M sampling points.

Step 3: Choose a number Nv ≫ N , distribute Nv vir-
tual loudspeakers uniformly across the loudspeaker region (l-
th virtual loudspeaker located at xv

l ), and compute the ATF
of each virtual loudspeakers at M sampling points. Store the
results in an M × Nv matrix H. The l-th column of H, hl,
contains the ATF of the l-th virtual loudspeaker at each of the
M sampling points.
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Step 4: For each n = 1, 2, ..., N , find hl that best matches
gideal

n ,

l∗(n) = argmin
l

d(hl,g
ideal
n ),

and place the n-th loudspeaker at xv
l∗(n), the location of the

l∗(n)-th virtual loudspeaker. In our experiments, as a measure
of matching between hl and gideal

n , we used the negative of
the absolute value of the inner product between hl and gideal

n ,
that is d(hl,g

ideal
n ) = −|hH

l gideal
n |. Although d(·, ·) is not a

formal matrix metric, it has several nice features in the con-
text of our problem: (1) orthogonal vectors are most “distant”
from each other (d = 0 for orthogonal vectors, which is the
highest it can be), and (2) unlike Euclidean distance, d is in-
variant to vector inversion (multiplication by −1), which is
important in our case because SVD is unique only up to a
unit-phase factor of left- and right-singular vectors.

Step 5: After finding the locations, calculate the ATF ma-
trix of the new arrangement, and find the complex amplitude
of the loudspeakers (s) by solving (1).

4. EXPERIMENTAL RESULTS

The formulation allows parametric study, but is not yet tied to
any particular configuration. The interest here is on the struc-
ture of Fig. 1. The loudspeakers occupy a 3 m ×3 m square
centered at the origin in the x − y plane, while the listening
region is a 1m cube, located 1 m away from the x − y plane
in the direction of positive z axis. The sampling points are
uniform throughout the cube, with Cartesian spacing of 0.2
m, so the number of sampling points is M = 125. (The sam-
ple locations are a half sample spacing from the edges of the
cube.) The number of loudspeakers is N = 25, with a Carte-
sian spacing of 0.5 m. The number of virtual loudspeakers in
Step 3 of the placement algorithm was Nv = 400 (Cartesian
spacing of 0.15 m). The desired field is from a point source
at (x, y, z) = (0, 0,−8), with complex amplitude equal to
8. The regularization factor is taken from [9]. Spot frequen-
cies of interest, elaborated below, (and their wavelengths) are
200 Hz (1.7 m), 600 Hz (0.56 m) and 2000 Hz (0.17 m). So
it is clear that for the higher frequencies the planar aperture
is under-sampled; for example at 2000 Hz, the loudspeaker
spacing of 1.17 wavelengths is under-sampled, although the
directional coverage (directions encompassing the cube) be-
ing smaller than π helps somewhat. The angular extent of
the planar aperture as viewed from the cube affects the spatial
sampling requirement in the cube. From these considerations,
achieving perfect performance is unlikely, depending on the
target field, even at single frequencies. The experiments, re-
ported below with the free space conditions, offer a feel for
the best possible performance.

In the first experiment, the frequency of the desired wave
is 600 Hz, and the maximum normalized loudspeaker power
is pmax = 0.1. Fig. 2 shows the real parts of the desired

Fig. 1. Sound field reproduction in a cube by a planar array.

(a) (b) (c)

Fig. 2. Pressure at a plane in the cube at 600 Hz, indicating
the wave structure. Real parts of (a) the desired field, (b) the
field produced by uniform loudspeaker placement and (c) the
field produced by the modified placement.

field (left column), the field produced by the uniform loud-
speaker distribution (middle column), and the field produced
by the modified loudspeaker placement (right column), on a
plane that passes through (0, 0, 1) and (1, 0, 1) in the cubic
listening region. By eyeballing the figures, it is evident that
the modified loudspeaker placement offers a better reproduc-
tion of the desired field, compared to a uniform loudspeaker
distribution. To quantify the improvement, the relative error
is used,

Error (dB) = 10 log10

(

||pdes − p||2

||pdes||2

)

. (9)

For this calculation, the desired or target field pdes and the
reproduced field p are evaluated at more than the M = 125
sampling points used to generate loudspeaker placement.
Here, 125, 000 uniformly spaced points are used in (9). This
ensures that the cube is comfortably over-sampled - even at
2000 Hz the Cartesian spacing is about a tenth of a wave-
length.

Fig. 3 shows the error obtained for various frequencies of
the desired wave between 200 Hz (spatially oversampled) and
2000 Hz (undersampled). The modified placement reduces
the error by 6 dB at mid-frequencies, and by up to 2 dB at
high frequencies, relative to uniform loudspeaker placement.

In the next experiment, the frequency is 600 Hz, and
the maximum normalized loudspeaker power pmax is varied.
Fig. 4 shows that the error of the modified placement is less
than that of the uniform placement for the same maximum
power. Equivalently, for the same approximation error, the
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Fig. 3. Relative error for the uniform and modified loud-
speaker placement for various frequencies of the desired field.
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Fig. 4. Relative error for the uniform and modified loud-
speaker placement for various values of pmax, at 600Hz

modified placement consumes less power.

In Fig. 4, the gap between the errors produced by uniform
and modified placement reduces as the maximum power in-
creases. However, this gap increases at higher frequencies.
For example, in Fig. 4, for 600 Hz, the gap between error
curves at pmax = 1 is about 2 dB. At 1200 Hz, this error gap
is about 10 dB. The desired and reproduced fields at 1200 Hz
are shown in Fig. 5 on a plane that passes through (0, 0, 1)
and (1, 0, 1) in the cubic listening region.

Next we seek a feel for the bandwidth limitations of the
configuration. The placement is optimized for 300 Hz and
1000 Hz, denoted P300 and P1000, respectively, and their er-
ror plotted from 300 Hz to 1000 Hz in Fig. 6, along with the
error for the uniform placement. The maximum normalized
power is 0.1. The placement, optimized at one frequency, say
300 Hz, is seen to work well over a wide bandwidth.

In the next experiment, the sensitivity of the system to the
source location is sought. The target field’s point source is
placed at (0, 0,−4), (0, 0,−12), (0, 8,−8), (4, 0,−8), and
(4, 4,−4), and for each case, the loudspeaker locations are
optimized separately. The frequency is 600 Hz, and the maxi-
mum normalized power is 0.2. The error values are in Table 1,
showing that the modified placement reduces the error relative
to uniform placement by 3–6 dB. Fig. 7 shows the selected
locations (blue) when the source is at (0, 8,−8), with red dots
indicating the examined locations of the virtual loudspeakers.
Note that due to the location of the source (x = 0, y > 0), the
selected loudspeaker locations cluster around the plane x = 0
and in the upper part of the array.

(a) (b) (c)

Fig. 5. Same as Fig. 2, but for 1200 Hz.
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Fig. 6. Relative error for the uniform and modified placement
optimized at 300 Hz (P300) and 1000 Hz (P1000).

Table 1. Relative error in dB of the uniform placement and
the modified one, for various locations of the desired source

(0,0,−4) (0,0,−12) (0,8,−8) (4,0,−8) (4,4,−4)

Uniform −1.70 −4.91 −2.93 −3.81 −2.79

Modified −5.55 −11.41 −9.63 −9.24 −5.64
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Fig. 7. Selected locations of the loudspeakers.

5. CONCLUSION

The formulation for optimizing loudspeaker placement for
sound field reproduction has been presented, allowing para-
metric study of the configuration. The physical basis is
the ATF matrix of the loudspeakers to the sample points,
and here, idealized (no reverberation, dispersion-free) free
space propagation was used. Densely spaced candidate loud-
speaker locations offer a selection pool for finding the best-
performing set of placements. The modified placements,
relative to a uniform loudspeaker arrangement, result in a
lower reproduction error and lower power consumption. Nu-
merical experiments demonstrate that the modified spacing
improves the relative approximation error between 3 dB and
10 dB, depending on the configuration.
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