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ABSTRACT

We propose a novel application of a family of non-parametric sta-
tistical models to estimate head-related transfer functions (HRTFs)
using spatial-temporal Gaussian processes (GPs). In this approach,
we model the head-related impulse response (HRIR) utilizing non-
parametric regression via a GP. The challenge posed by this prob-
lem involves accurate modeling of the spatial correlation structure
jointly with the temporal correlation structure at each spatial loca-
tion for the HRIR. We solve this problem by constructing a joint
spatial-temporal kernel characterizing the GP regression model. To
perform inference, we estimate the hyper-parameters of the GP re-
gression kernel via maximum signal-to-deviation-ratio estimation on
the basis of a real experimental setup in which we collected obser-
vations of the HRIR using two head-and-torso simulators (HATSs):
KEMAR and B&K. We also perform cross validation of the model
by training on the KEMAR system and assessing the generalization
of our model and its out-of-sample predictive power for HRIRs at
any locations that we predict by the model assessed on the B&K
system. The corresponding HRTFs are obtained as the Fourier trans-
form of the HRIRs. In the experiments, we show that our method
is robust against variation in the azimuth interval needed to perform
high-accuracy interpolation and has the expressive power to handle
the individual characteristics of each HATS.

Index Terms— Head-Related Transfer Function, Head-related
Impulse Response, Interpolation, Gaussian Process, Kernel Methods

1. INTRODUCTION

There is strong demand for the development of advanced telecom-
munications and for surround-sound audio systems that can artifi-
cially simulate the feeling of being immersed in a particular spatial
environment, such as a room or concert hall when one is physically
not located in that environment. For example, this may be useful
when creating the atmosphere of a concert hall in a surround-sound
system in a home theater or when creating the sense of direct con-
versation between people in a common spatial environment when
they are physically in separate locations and communicating through
(wireless) devices.

The current interest in this regard involves the development
of the sensation of immersion in alternative acoustic environ-
ments, which are simulated artificially for a user by headphones
or surround-sound audio devices. To this end, there has been re-
search into what is known in frequency-domain sound modeling
as an HRTF and in time-domain sound modeling as an HRIR. The
development of statistical models to describe and parameterize the

HRIR and HRTF that are accurate and robust and characterize both
the spatial and temporal features will improve the synthesis of the
acoustic characteristics of alternative environments for users and
hence improve the synthesized feeling of immersion in such an
environment, e.g., a concert hall.

More formally, HRTF models capture the response in the fre-
quency domain that characterizes how an ear receives a sound from
a point in space. Therefore, they are influenced by the shape of the
human head and ear and the angles at which the sound wave is inci-
dent. In this regard, HRTF models should be flexible at adapting to
particular unique characteristics of different anatomies. In general,
in order to control a sound image localization accurately, one must
measure omnidirectional HRTFs for each human a priori, and this
clearly cannot be done in practice. Parameterizing all of these char-
acteristics in an HRTF model will be non-generalizable, meaning
that the model will not perform well in prediction for both in-sample
and out-of-sample forecasting of the HRTF for angles for which the
incident interference was not observed.

To meet this challenge, previous HRTF model design methods
have involved interpolation from HRTFs measured over a discrete
grid (mesh) of angles in the range [0, 2π]. Several HRTF interpo-
lation methods that have been explored, and ones utilizing linear
interpolation [1, 2], filter bank models[3, 4], principal component
analysis (PCA) [5, 6, 7], Karhunen-Loeve expansion (KLE)[8], re-
construction via basis functions[9], spherical harmonics expansion
and ambisonic sounds[10, 11] have been reported. However, the
HRTF interpolation models in the conventional methods are simple
and limited and the performance is neither sufficient nor generaliz-
able.

In this paper, we demonstrate that one can outperform the
simple-interpolation-based basis regression models previously pro-
posed, in terms of predictive performance and model generalization
by instead considering the flexible class of non-parametric statistical
regression models based on GPs[12, 13] to perform such inference
modeling for HRTF estimation. There are many ways that one can
develop such a class of non-parametric models in the modeling of
HRTFs and HRIRs. The key components of these models involve
the specification of a distribution over a smooth random function
(surface) with its mean surface representing the unknown HRTFs
or HRIRs over a mesh of incident angles for a given anatomy
configuration. In approaching the design of such a model, one
must consider the spatial and temporal dependence features of the
response: it is in this respect that we differ from the standard ap-
proach to such a problem, which involves separating the spatial and
temporal dependences through a product space formulation, which
is often common in machine learning and various applications of
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GP modeling, e.g., motion tracking modeling[14], modeling gas
distribution[15], environmental surveillance[16], modeling MRI
brain images[17], transcriptional landscape estimation[18], clus-
tering gene expression[19], inter atomic potential models[20], and
modeling of wire-cut electrical discharge machining(WEDM)[21]
as discussed in [22, 23]. In this paper, we consider the temporal
and spatial features (co-variates) jointly in the covariance and mean
functions. To simplify the design and estimation efficiency, we
demonstrate the performance of the GP model under the isotropic
spatial dependence assumption.

The characteristics of a GP model are ideal for an HRTF since it
is a flexible class of models that can adapt to the varied anatomies of
humans and all possible sound wave incident directions without the
need to make an explicit parametric model. Instead, what we develop
is a distribution over a random function that is uniquely characterized
by the spatial and temporal dependence structures utilized to define
the GP. These attributes can be learnt efficiently from data through
specification of mean and covariance functions in the GP, as detailed
below.

In short, the goal of this paper is to investigate the utilization of
GPs in HRIR/HRTF interpolation and devise an effective method of
HRTF interpolation. We assess the performance of this GP regres-
sion model by calibrating it with training data from KEMAR and
then testing its generalization out-of-sample predictive performance
spatially on test data from B&K.

2. HRTF NON-PARAMETRIC REGRESSION VIA A
SPATIAL-TEMPORAL GAUSSIAN PROCESS

Here, we overview briefly how to define a spatial-temporal GP re-
gression model and then describe how to model the HRIR using
spatial-temporal GPs. Finally, the HRTF is obtained as the Fourier
transform of the HRIR.

2.1. Gaussian Process Definition

A GP defines a distribution over a space of functions and it is com-
pletely specified by the equivalent of sufficient statistics for such a
process. More formally, it is defined as follows [13].

Definition (Gaussian process): Let X ⊂ RD be some bounded
domain of a d-dimensional real-valued vector space. Denote by
f(x) : X 7→ R a stochastic process parametrized by x ∈ X . Then,
the random function f(x) is a Gaussian process if all its finite di-
mensional distributions are Gaussian, where for any m ∈ N, the
random variables (f (x1) , · · · , f (xm)) are normally distributed.

A GP is formally defined by the following class of random func-
tions:

F := {f (·) : X 7→ R s.t. f (·) ∼ GP (µ (·;ϕ) , k (·, ·;Ψ))} ,
µ (x;ϕ) := E [f (x)] ,

k (·, ·;Ψ) := E [(f (xi)− µ (xi;ϕ)) (f (xj)− µ (xj ;ϕ))] ,

where at each point the mean of the function is µ(·;ϕ) : X 7→ R,
which is parameterized by ϕ, and the spatial dependence between
any two points is given by the covariance function (Mercer kernel)
k (·, ·;Ψ) : X × X 7→ R+, parameterized by unknown vector Ψ,
see details in [13].

Furthermore, we make the following notational definitions:

k (x∗,x1:N ) := E [f (x∗) f (x1:N )] ∈ RN ,

K (x1:N ,x1:N ) :=

 k (x1,x1) · · · k (x1,xN )
...

. . .
...

k (xN ,x1) · · · k (xN ,xN )

 ∈ S+
(
Rd

)
,

where K is known as the Gramm matrix defined on S+
(
Rd

)
cor-

responding to the manifold of symmetric positive definite matri-
ces. Having formally specified the semi-parametric class of Gaus-
sian process models, we proceed with presenting the system model
for the HRIR under the GP framework.

2.2. HRIR Modeling via Spatial-Temporal Gaussian Process

Suppose that we observe N observations over a spatial-temporal do-
main utilizing a given selection of a HATS to produce training data,{(

x(i), z(i)
)}N

i=1
. In the model that we develop, element x(i) will

contain the location information (encoded by angle) and the tempo-
ral information (in ms) and the observations z(i) correspond to the
HRIR corresponding to a given x(i). Then, the standard GP regres-
sion can be expressed as

Z1:N = h1:N +W1:N , (1)

with the random function corresponding to the noisily observed
HRIR evaluated at a set of points x1:N , denoted by the random vec-
tor h1:N := [h (x1) , · · · , h (xN )]T (here h(·) corresponds to f(·)
in section 2.1), and W1:N is a zero-mean i.i.d vector of Gaussian
noise with covariance σ2

WI. Furthermore, we consider zero mean GP
models in this paper.

Having specified the generic GP framework in Section 2.1 and
equation (1), we now make explicit the spatial-temporal GP model
used for the HRIR formulation, given by

Z(t, θ) = h(t, θ) +W (t, θ), (2)

where h(t, θ) indicates the unknown random function with time t
and location θ observed in noise, which is be assumed to be dis-
tributed according to a GP non-parametric distribution over smooth
functions. Here, θ is the azimuth from the front of the head, and we
assume Wn(t) ∼ N (0, σ2), which is independent of the random
function h(t, θ). The diagram in Fig. 1 describes these quantities.

In specification of the GP model, the choice of kernel is an
important consideration because it dictates the extend to which the
joint spatial-temporal correlation structures of the HRIR will be ad-
equately modeled by the GP. In this paper, we make the challenging
choice of not separating space and time; instead, we incorporate both
into a common kernel k (x,x′), which is defined as follows for two
vectors (angle,time) given by

k
(
x,x′) = exp

(
−|x− x′|Σ−1|x− x′|

)
Σij =

{
σ2
i , if i = j

0, otherwise

(3)

The hyper-parameters σi are estimated so as to maximize the signal-
to-deviation-ratio(SDR) as mentioned below. Therefore, the two
stages involve in modeling the HRIR via a GP framework are as
follows:
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Azimuth interval Number of HRIRs
5◦ and 10◦ 5
15◦ 4
30◦ 3
45◦ or larger 2

Table 1. The numbers of HRIRs used in interpolation for the az-
imuth intervals of training data measured.

Stage 1: Estimation of GP Hyper-Parameters for Spatial-
Temporal Kernel.

The first involves estimation of the hyper-parameters Ψ compos-
ing the spatial-temporal kernel k (·, ·;Ψ). Note that we estimate
them via a maximum SDR procedure with a grid search. This
procedure was found to be more robust to over-fitting of the GP
model that can occur when compared to the maximum-likelihood
approach. It involved using SDR with the hyper parameter Ψ, d(Ψ)

between a measured HRIR value ĥ(t, θ) and the GP model mean
value h(t, θ;Ψ) which is estimated using the spatial-temporal ker-
nel. Therefore the estimate was iteratively found as the solution to
equation (4).

d(Ψ) =
1

M

∑
m

10 log
|ĥ(t, θm)|2

|ĥ(t, θm)− h(t, θm;Ψ)|2

Ψ̂SDR = argmax
Ψ

d(Ψ). (4)

where M is the number of all interpolated azimuths and θm is the
m-th azimuth for interpolation. Here, we make explicit in the no-
tation for h(t, θ;Ψ) the dependence of the mean of the GP model
on the hyper-parameters Ψ in the GP HRIR model. We selectively
used a few HRIRs with the closest degrees according to the con-
dition in interpolation. Table 1 lists the numbers of HRIRs for the
azimuth intervals of training data measured for interpolation. ĥ(t, θ)
and h(t, θ;Ψ) are scaled by the maximum amplitude value.

Stage 2: GP Spatial-Temporal Prediction for the HRIR.

The second stage involves predicting at new space and time points
for which observations were not made. Under this model, we can
express the mean prediction function, at any ’location’ x∗, having
observed Z1:N spatial observations, as:

f (x∗) = E [h (x∗) |x∗,Z1:N ]

= k (x∗,x1:N )
(
K (x1:N ,x1:N ) + σ2

WI
)−1

Z1:N .
(5)

The prediction error variance (uncertainty) function can be ex-
pressed as:

σ2 (x∗) = E
[
h (x∗)

2 |x∗,Z1:N

]
− E [h (x∗) |x∗,Z1:N ]2

= k (x∗,x∗)− k (x∗,x1:N )
(
K (x1:N ,x1:N ) + σ2

WI
)−1

k (x1:N ,x∗) .

(6)

Interpreting these generic GP model results in the case of the HRIR
model we propose in equation (2) involves considering the estima-
tion of the sufficient statistics of the distribution of the prediction
h(x∗) for an input x∗ when inputs X = [x1,x2, ...,xn]

T and the
random function at the observation locations h = [h(x1), h(x2), ...,
h(xn)]

T (in short, x = (t, θ)) are given. Obtaining the results in
equations (5) and (6) is achieved by considering the joint distribu-
tion of h and h(x∗). This is also a Gaussian distribution according

Microphone

HATS

Loudspeaker
(BOSE Acoustimass)

Microphone
(SONY ECM-77B)

θ

Fig. 1. Experimental setup for HRIR measurement.

to the GP definition. When the mean values of h and h(x∗) are 0,
the joint distribution is formulated as follows.[

h
h(x∗)

]
∼ N

(
0,

[
K (x1:n,x1:n) + σ2I k (x∗,x1:n)

k (x1:n,x∗) k (x∗,x∗))

])
.

(7)

3. EXPERIMENTS

3.1. Experimental Condition

The HRIRs were measured with two kinds of HATSs—KEMAR and
B&K4128 (hereafter B&K)—for every 1◦ azimuth on a horizontal
plane in different soundproof chambers whose each reverberation
times were less than 150 ms (as shown in Fig. 1). The distance be-
tween the sound source and the midpoint between the ears was 1.2 m
for KEMAR and 1.5 m for B&K. A swept sine signal [24] was trans-
duced by a loudspeaker (BOSE Acoustimass). Microphones (SONY
ECM-77B) were arranged at the entrances of the ear canals to block
them. The sampling frequency was 48 kHz. Both HATSs were posi-
tioned on a turntable that can be moved at intervals of 1◦, with accu-
racy of 0.3◦. The power spectra of the measured HRTFs for the left
ears of KEMAR and B&K are shown in Fig. 2. The azimuthal angle
of 0◦ corresponds to the speaker position of the frontal direction of
the HATS, and it increases clockwise. The frequency characteris-
tics of the HATSs are different. We used HRIR data with KEMAR
for training and conducted open and closed tests using both HATSs.
Where an open test is one in which training is done on one HATS ap-
paratus and testing on the other, whilst a closed test involved within
HATS training and testing of the GP predictive performance.

From two perspectives—(1) the measurement of the azimuth in-
terval needed to perform high-accuracy interpolation and (2) the ro-
bustness for different kinds of HATSs—we compared our method
with two conventional methods: linear interpolation (denoted ”lin-
ear”) and interpolation by spatial linear prediction (”spatial linear
prediction”) [25]. For the linear method, the interpolated HRIR
ĥ(t, θ) for angle θ obtained from those measured at θa and θb is
obtained as

ĥ(t, θ) = αh(t, θa) + (1− α)h(t, θb) a ̸= b, (8)

where
α =

θb − θ

θb − θa
. (9)

We used SDRs in equation (4) averaged over all locations for
interpolation to evaluate the performance. A larger SDR score indi-
cates a higher-accuracy interpolation. The initial delays of HRIRs
for different azimuths are different. For the linear method, the initial
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Fig. 2. Power spectra of measured HRTFs for KEMAR (top) and
B&K (bottom). The gray scale indicates the relative level in dB.

delay for each HRIR was adjusted in advance. For our method and
the spatial linear method, the time gap between adjacent HRIR data
was adjusted by using the point having the maximum amplitude as a
reference point.

3.2. Assessing Model Generalization for Spatial-Temporal GP
versus Linear Interpolation

We investigated the measurement of the azimuth interval needed for
high-accuracy interpolation by comparing our method and the linear
method. Fig. 3 shows the averaged SDRs when using training data
measured with azimuth intervals 10◦, 15◦, 30◦, 45◦, 60◦, and 90◦

and interpolating HRIRs every azimuth 5◦ selectively using a few
HRIRs with the closest angles according to the azimuth intervals
as listed in Table 1. Here, we used KEMAR for both training and
testing.

For all azimuth intervals, our method outperformed the linear
method. As the interval for training data increased, the difference
in the SDR became larger. We think that the assumption of spatial
linearity for HRIRs in the linear method tends to fail when the in-
terval is large. Note that the SDR of our method with azimuth 90◦

is roughly the same as that of the linear method with azimuth 45◦.
Our method is robust against variable measurement of the azimuth
interval for training.

3.3. Predictive Performance of Spatial-Temporal GP versus
Spatial Linear Prediction

We compared the performance of our method and the spatial linear
prediction method [25] when using the same kind (”closed test”) and
different kinds (”open test”) of HATSs for training and testing. Fig.
4 shows the averaged SDRs when using training data with azimuths
5◦ and 10◦ and interpolating HRIRs every azimuth 1◦. HRIRs with
KEMAR were used for training and HRIRs with B&K were used for
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Fig. 3. Comparison of SDRs between our GP regression method and
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Fig. 4. SDRs in closed and open tests when using the same and
different kinds of HATSs.

testing in the open test. For our method, four HRIRs with the closest
azimuths were used in interpolation. For the spatial linear prediction
method, the number of taps was set to 8 for azimuth interval 5◦ and
6 for azimuth interval 10◦ on the basis of preliminary experiments.

When using training data with azimuth interval 10◦, our method
clearly outperformed the spatial linear prediction method, although
when using training data with azimuth interval 5◦, it has a slightly
lower SDR than the spatial linear prediction method. This result
indicates that our method has the expressive power to handle the in-
dividual characteristics of multiple HATSs. When training data with
azimuth interval 5◦ was used, we think that the hyper-parameters
in our method were excessively over fitted to the data reflecting the
characteristics of KEMAR. Evidence for this appeared in the closed
test, in which our method outperformed the spatial linear predic-
tion method. Our future work includes determining how to estimate
hyper-parameters that are robust for any HATS in any conditions.

4. CONCLUSION

We studied HRIR modeling based on spatial-temporal GPs and
HRTF interpolation. By comparing our method with the conven-
tional linear interpolation and interpolation by spatial linear predic-
tion, we found that it has superior expressive power for achieving
high-accuracy HRTF interpolation.

Our future work includes investigating a robust method using
hyper-parameters for various head and ear shapes. Moreover, we
will investigate HRTF interpolation for the angle of elevation and
develop a method of estimating HRTFs more flexibly from sound
sources in a three-dimensional space. We will also confirm the ef-
fectiveness of our method in a subjective evaluation paradigm.
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