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ABSTRACT
Crosstalk cancellation systems (CCSs) suffer from a rather narrow
sweet spot and small head rotations introduce significant interaural
time difference (ITD) errors at the ears of the listener that destroy
the 3D experience. In a previous study, we proposed a CCS with
a microphone-based head tracker that uses two microphones placed
closed to the ears of the listener. The head orientation was estimated
by minimizing the difference between the ITD of desired binaural
signals and the ITD of the microphones signals. We present here an
extension of the previously proposed system in which the tracking
of the ITD error is performed using a particle filtering (PF) approach
that allows to take into account the dynamics of the human head.
The head dynamics are modelled as a Ornstein-Uhlenbeck process,
which shows to be a closer approximation of the natural movements
of the head. Experimental results shows that with the proposed PF
approach, head rotations can be accurately tracked in the presence
of noise and when multiple virtual sound sources are reproduced
simultaneously.

Index Terms— Interaural time differences, particle filter,
Ornstein-Uhlenbeck process, crosstalk cancellation, head tracker

1. INTRODUCTION
Crosstalk cancellation systems (CCSs) seek to compensate for the
acoustic paths between the loudspeakers and the ears so that binau-
ral signals can be reproduced accurately at the ears when rendering
them through loudspeakers. When designed properly, CCSs are ca-
pable of an accurate 3D sound reproduction if the listener is within
the sweet-spot. However, CCSs suffer in general from a very narrow
sweet-spot and head rotations are likely to destroy the 3D sound ex-
perience [1, 2]. To ensure the desired experience, a head tracker is
usually required. There are several different technologies to track the
listener’s head, such as magnetic trackers and video cameras (see [3]
for a comprehensive summary). Many of the known technologies
are however not accurate enough to properly update the crosstalk
cancellation filters (CCFs).

Head-tracking in binaural reproduction systems can be seen as
an acoustic source localization (ASL) problem, where the aim is to
estimate the position or orientation angle of the listener relative to
the loudspeakers. In this case the source positions are fixed and the
microphone positions are varying. Surprisingly, there are very few
studies that have attempted to use microphones to estimate the lo-
cation of the listener. One of the few examples is the head tracker
proposed in [4] where two microphones are placed at the ears of the
listener and a set of anchor sources are used to estimate the loca-
tion of the listener. In their approach, at least three anchor sources
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are needed to find an unique position. In [5, 6], the location of the
listeners problem is solved by providing the listeners with binaural
head-sets. The head orientation is then estimated using the time de-
lay of arrival (TDOA) estimates between the listener and the speaker.
The performance of this approach improves as the number of listen-
ers/speakers increases and the proposed method shows root mean
square errors (RMSE) in the range of 10◦. For CCSs this error is
however unacceptable, given that the introduced interaural time dif-
ference (ITD) error will be above the audibility threshold [7].

We proposed in [8] a head tracker that uses two microphones
placed close to the ears of the listener. Using ITD error between the
desired binaural signals and the microphones signals, the orientation
angle with respect to the loudspeakers is estimated. Results showed
that, for single virtual sound sources, the head orientation can be
accurately tracked using a simple sign algorithm. However, in the
presence of multiple virtual sound sources and noise, a more robust
estimation algorithm is required.

This paper is an extension of the aforementioned CCS in which
a particle filtering (PF) approach is used to estimate the orientation
of the head in a robust manner. PF is a Bayesian filtering approach,
which estimates the current state of a dynamic process based on cur-
rent and previous measurements. Given that it is based on sequential
Monte Carlo (MC) approximations, it is not subject to any assump-
tion of linearity or Gaussianity of the model [9]. Thus, PF has been
successfully used for ASL where the location of the source is time
varying and the dynamics are usually non-linear [10–13].

In ASL applications microphone arrays are usually employed
and a set of different measurements are available at each time frame.
In the proposed CCS, we only have access to two microphones and
thus only one measurement is available per time frame. In order to
produce different measurements at each time frame, we propose to
estimate the ITD error in subbands. A byproduct of this approach is
that it improves the ability of the tracking system to accurately esti-
mate the head orientation even when multiple virtual sound sources
are reproduced. The measurements are then mapped into the ITD
error model proposed in [8] in order to account for the current state
of the CCFs and to derivate a localization function suitable for PF
tracking. In [6], the dynamics of the head rotations are modelled us-
ing a simple Brownian motion model. We propose here to model the
head rotations as an Ornstein-Uhlenbeck (OU) process, which better
resembles the typical dynamics of head rotations [14, 15].

2. MICROPHONE-BASED HEAD TRACKER
Fig. 1 shows a basic diagram of the proposed CCS and the geometry
that will be used throughout the paper [8] . The angle φs corresponds
to the span angle between loudspeakers, α is the orientation angle of
the head with respect to the middle point between loudspeakers and
θe is the angle of the ears with respect to the median plane. The
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functions Hji are the transfer functions between the ith loudspeak-
ers and the jth ear. The CCS makes use of the ITD error between
the input binaural signals di and the microphone signals vi to es-
timate the orientation of the head. The estimated orientation angle
α̂ is then used to calculate the corresponding acoustic transfer func-
tions (ATFs) Ĥji. The inputs to the CCS are the desired binaural
signals di and the estimated ATFs Ĥji, from which new CCFs are
calculated. In this work, we make use of the spherical head model
(SHM) to calculate the ATFs [16].

3. PARTICLE FILTER
The basic idea of PF is to recursively compute a posterior probability
density function (PDF) of the current state [11] . Let us first define
the state vector at time m for our head-tracking problem:

xm = [q,ω] , (1)

where q and ω represent the rotation and angular velocity vectors
respectively. In the state vector, the orientation is encoded by the
vector part of the unit quaternion, i.e. q = ~a sin(α/2), where α is
the orientation angle and ~a is the unit vector along the axis of rota-
tion [15]. The evolution state can be defined as a first-order Markov
process

xm = T
(
xm−1, ξxm

)
, (2)

where T (·) is a (possibly non-linear) function of the state xm−1 and
ξxm is an i.i.d. noise process. We seek to recursively estimate the
current state xm from the measurements

ym = S
(
xm, ξym

)
, (3)

where S(·) is an unknown (possibly non-linear) function and ξym
is an i.i.d. measurement noise process. The Bayesian approach to
the tracking problem is to recursively estimate the posterior PDF
p(xm|y1:m), where y1:m = [y1 . . . ym] is the concatenation of all
measurements up to timem. The estimate x̂m can then be computed
as the mean or mode of this PDF. This density is usually unavailable,
but can be estimated using a “prediction and update” scheme, using
the posterior probability p(xm−1|y1:m−1) at time m − 1 and the
transition PDF p(xm|xm−1) [10],

p(xm|y1:m−1) =

∫
p(xm|xm−1)p(xm−1|y1:m−1)dxm−1. (4)

The prior PDF can be updated using Bayes’ rule to obtain the
posterior PDF of the current state:

p(xm|y1:m) =
p(ym|xm)p(xm|y1:m−1)

p(ym|y1:m−1)
, (5)

where p(ym|y1:m−1) =
∫
p(ym|xm)p(xm|y1:m−1)dxm. The

likelihood function p(ym|xm) is defined by (3) and measures the
probability of receiving the data ym given the state xm.

Despite the fact that no closed form solution exists to these equa-
tions they can be approximated through MC simulations of a set of
particles. The PDF p(xm|y1:m−1) can be approximated with a dis-
crete distribution using a set of N random samples of the state space
{x(p)

m }Np=1 with associated likelihood weights {w(p)
m }Np=1. x

(p)
m rep-

resents a particle and is defined as the sampled representation of the
source state [10, 17].

3.1. Head dynamics
In ASL problems, the source dynamics are typically modeled using
stochastic approaches to describe the dynamic equations. Brown-
ian motion models are commonly used for this purpose, where the
dynamics are modelled as a Wiener process (WP) [6, 13]. Another

Fig. 1. Simplified diagram of the proposed CCS with a microphone-
based head-tracker and geometry used throughout the paper (see [8]
for a detailed description).

commonly used approach is the Langenvin model [17]. However,
such models do not necessarily resemble the dynamics of head rota-
tions. Here we make use of an stochastic model that describes the
dynamics of the head as an OU process [14, 15]. In an OU process
there is an inherent tendency of the particles to move back towards
a central location, which describes better the nature of head move-
ments.

Modelling the head movement as an OU process, the set of
stochastic differential equations is given by [15]

q̇ =
qω

2
, ω̇ = −Bωω +

√
2BωGωwω, (6)

where wω is a vector whose elements are independent unit-variance
zero-mean Gaussian white noise processes and Gω is a covari-
ance matrix of the accelerations along each axis. The matrix
Bω = diag

([
βωx , βωy , βωz

])
contains the correlation coefficients

on each axis. Given that in our CCS we assume rotations in only
one axis, the OU discrete update equations for this case are [15]

qm = qm−1 exp(Θm−1/2) exp(ξqm−1/2), (7)
ωm = ωm−1 exp(−βω∆T ) + ξωm−1 , (8)

where Θm−1 = ωmβ
−1
ω (1− exp (−βω∆T )). ξqm−1 and ξωm−1

are the accumulated effects of random accelerations of the state vec-
tor:

ξqm =

∫ ∆T

0

β−1
ω (1− exp (−βωu))

√
2βωσwω(u) du,(9)

ξωm =

∫ ∆T

0

exp (−βωu)
√

2βωσwω(u) du, (10)

where σ is the variance of the acceleration. From the noise charac-
teristics, the transition PDF for this model can be defined as

p(xm|xm−1) = F (xm; Qm,Σ) , (11)

where F (·) is the normal cumulative distribution function of a Gaus-
sian variable evaluated at xm, with mean and covariance matrices:

Qm = diag ([qm−1 exp (Θm−1/2) , ωm−1 exp (−βω∆T )]) , (12)

Σ = diag
([
β−1
ω

(
1− e−βω∆T

)√
2βωσ , e

−βω∆T
√

2βωσ
])
.

(13)
3.2. Localization function
The localization function transforms the measurements into a func-
tion that usually exhibits a peak at the estimated location of the sound
source. Traditionally, these measurements are obtained directly from
a beamformer output [18] or indirectly from TDOAs estimated by
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different receivers [19]. In both cases, ASL methods commonly rely
on more than one measurement per time frame. In our head-tracker
application, the head orientation is estimated based on ITD errors
instead of TDOAs. That is, the measurement is not only a function
of the current head-orientation, but also of the head orientation used
to calculate the CCFs. Furthermore, we only have access to two
microphone signals. Thus, we need to redefine our measurements
in a way that different measurements become available at each time
frame and that a proper localization function can be derived.

To obtain different ITD error estimates at each time frame, we
propose to estimate the ITD error in subbands. Let the discrete
functions r(m)

in (n) and r(m)
out (n) be, respectively, the ITD estimation

functions at time frame m of the input binaural signals and of the
microphone signals, with their respective short-time frequency re-
sponsesRin(m, k) andRout(m, k). The ITD is estimated as the time
at which r(m)

in (n) and r(m)
out (n) have their maximum value. These

functions could be obtained for example from the generalize cross-
correlation (GCC) method or ATFs ratios [20,21]. Now, let us divide
the spectrum into L partitions, where b = 1 . . . L is the partition in-
dex. We define the subband ITD error as

ITDerror(m, b) = arg max
n

{
r

(m,b)
in (n)

}
− arg max

n

{
r

(m,b)
out (n)

}
,

(14)
where r(m,b)

in (n) and r(m,b)
out (n) are, respectively, the time domain

representations of Rin(m, k) and Rout(m, k) for k ∈ [Eb−1, Eb),
where Eb is defined by the partition bandwidth. Let us use the co-
herence at the microphones and the magnitude of the ITD estimation
function as a measure of the closeness of the estimated ITD error to
the true value as follows:

w(b) = Cout(m, b)
Rout(m, b)

‖Rout(m, :)‖∞
, (15)

where Rout(m, b) = 1
Eb−Eb−1

∑Eb
k=Eb−1

|Rout(m, k)| is the mean
value of the magnitude of the ITD estimation function for partition
b, Rout(m, :) = [ Rout(m, 1) . . . Rout(m,L) ] and Cout(k, b) =

1
Eb−Eb−1

∑Eb
k=Eb−1

Cout(m, k) is the mean value of the coherence
between microphones evaluated in partition b. We need now to map
our measurements into particles. In [8], we proposed a model for the
ITD error as a function of the head orientation angle. According to
that model, the ITD error for a given state x

(p)
m is defined as

ITD(p,m)
error ≈

(
τ

(m−1)
22 − τ (m−1)

11

)
−
(
τ

(p,m)
22 − τ (p,m)

11

)
, (16)

where τ (p,m)
ii , i ∈ {1, 2}, are the delays of the direct paths between

the ith loudspeaker to the ith ear corresponding to the state vector
x

(p)
m and τ (m−1)

ii , i ∈ {1, 2}, are the delays corresponding to the
ATFs used to calculated the CCFs. We model these delays as [8, 22]

τ22 − τ11 = (17)

rs

c

 θe − φs
2
− α+ Γ

(
φs
2
− α

)
−φs

2
≤ α ≤ −θlim

−2α −θlim ≤ α ≤ θlim

−θe + φs
2
− α− Γ

(
φs
2

+ α
)

θlim ≤ α ≤ φs
2

,

where Γ(Ψ) = −θ0 +
√
ρ2 − 1 −

√
ρ2 − 2ρ cos(θe −Ψ) + 1,

ρ = rs/r is the normalized distance of the loudspeaker (rs) with
respect to the radius of the sphere (r), θ0 = cos−1(1/ρ) and θlim =
θe − θ0 − φs

2
. In this study we assume a constant distance between

the loudspeakers and the centre of the head.

Making use of the subband ITD error defined in (14) and the
model (16), we define our localization function for the state vector

x
(p)
m as

ym(p) =

L∑
b=1

w(b)S
(
x(p)
m , b

)
, (18)

where

S
(
x(p)
m , b

)
= 1− tanh

[
κ
(
|ITD(p,m)

error − ITDerror(m, b)| − στ
)]

is a function that maps the estimated ITD error into the model (16).
The constant κ controls the width of the peaks in the localization
function ym and στ is the standard deviation of (16). We have that
if w(m) contains only one significant value at a certain partition b,

ym(p) ≈ N
(

ITD(p,m)
error ; ITDerror(m, b), στ

)
, (19)

where N (·) is a Gaussian distribution with mean value equal to
ITDerror(m, b) and variance στ , evaluated at ITD(p,m)

error .

3.3. Likelihood function
The likelihood function should reflect the fact that peaks in the local-
ization function correspond to likely head orientations [17]. Given
that our localization function is actually a mapping of one measure-
ment into different possible states, we use in this study a pseudo-
likelihood function, which uses directly the localization function as
proposed in [23], namely

p(ym|x(p)
m ) = (max {ym(p), ε0})r , (20)

where r > 0 shapes the localization function to make it tractable for
recursive implementation and ε0 ensures that the likelihood function
is always positive [23]. Another purpose of ε0 is to reflect the prob-
ability that none of the peaks in the localization function correspond
to the true orientation of the head.

3.4. Importance function
The aim of the importance function is to relocate particles based on
the current measurements instead of propagate them from the previ-
ous state [9,12]. It can be interpreted as the PDF q(xm|y1:m) which
gives a rough estimation of the state-space regions from where the
particles are to be generated. Here we make use of (19) to derive an
importance function that depends on the current measurements and
the model as follows:

q(x(p)
m |y1:m) = (21)

1

L

L∑
b=1

(1− εq)N
(

ITD(p,m)
error ; ITDerror(m, b), σimp

)
+ εq,

where εq serves the same purpose as ε0 and σimp controls the
width of the state-space region from where particles will be sampled.
The unormalized importance weights are calculated as [9]

w̃(n)
m = w

(n)
m−1

p(ym|x(p)
m )p(x

(p)
m |x(p)

m−1)

q(x
(p)
m |xm−1,ym)

. (22)

3.5. Algorithm
Ideally, the importance function should be a function of current mea-
surements and previous states [9]. However, the importance function
defined in (21) takes into account only current measurements. Thus,
to generate some particles based on previous states, we apply an ap-
proach similar to the one proposed in [12]. The PF algorithm used
in this study can be summarized as follows:

At time framem and particle index p = 1 . . . N , draw a random
number l from a normal distribution and generate new particles with
one of the following approaches:
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1. For Pr ≤ l < Pr + Ps: sample the particle x
(p)
m from the

importance function q(x(p)
m |xm−1,ym) and compute the un-

ormalized weights according to (21);

2. For l ≥ Pr + Ps: generate a new particle x
(p)
m according to

the dynamic model (7) and (8) and set the unormalize weights
to w̃(p)

m = p(ym|x(p)
m );

3. For l < Pr (reinitialisation): sample the particle x
(p)
m from

the importance function q(x(p)
m |y1:m) and set the unormalize

weights to w̃(p)
m = p(ym|x(p)

m );

where Ps is the probability of the importance function being suit-
able for sampling and Pr is the probability of reinitialisation. Reini-
tialisation is introduced to deal more efficiently with silences [12].
The weights are then normalized so that they add up to unity, i.e.
w

(p)
m = w̃

(p)
m /

∑N
i=1 w

(i)
m . The head orientation is estimated as

α̂m = 2 sin−1

(
N∑
p=1

w(p)
m q(p)

m

)
. (23)

Finally, a systematic resampling scheme was incorporated to account
for weight degeneracy [24].

4. EXPERIMENTAL RESULTS

We simulated a CCS with a microphone-based head tracker as de-
picted in Fig. 1. The simulated loudspeakers were spanning 30◦ and
were located symmetrically with respect to the center of the listener’s
head at a distance of rs = 1.2 m. The simulated listener rotated his
head from left to right at random intervals with an average speed of 4
degrees per second. The binaural input signal consisted of three vir-
tual sources: a female singer located at 45◦, a saxophone located at
−30◦ and a crowd sound located at 0◦. All angles are relative to the
median plane and negative angles denote sources at the right of the
listener. All virtual sources were placed at 0.75 m from the listener
and had a duration of 20 s, with a sampling frequency of 48 kHz.

The adaptation was done on a frame-by-frame basis with a frame
size of M = 2048 resulting in an update interval ∆T = 42.7 ms.
To estimate the ITD error, we used ATFs ratios as proposed in [21].
The first form of stationarity was used and the recursive least square
(RS1) was implemented. The spectrum was divided into L = 20
partitions uniformly spaced between 500 Hz and 8000 Hz on an ERB
scale. Sensor noise at the microphones was simulated using white
Gaussian noise and the signal-to-noise ratio was set to 20 dB.

The variance σ and correlation coefficient βω of the dynamic
model were set to 0.5 rad s−1 and 16.4 s−1 respectively [15]. The
probabilities Ps and Pr were varied from frame to frame and set to
reflect the probability of a signal being present. For that purpose, we
used the maximum value of w(m) = [w(1) . . . w(L)], i.e. Ps =
0.25 max{w(m)} and Pr = 0.05 max{w(m)}. To evaluate the
dynamic model (7) and (8), we evaluated the tracking performance
of the proposed PF when modelling the dynamics as a WP using the
same values for σ and βω [15]. The settings of the PF algorithm
are summarized in Table 1. The selected values were found to be
optimal for the PF performance with both dynamic models. As a
reference, the tracking performance is also compared with the sign-
error algorithm presented in [8]. The input to the latter is set to the
estimated ITD error of the partition where w(m) is maximum.

Variable N κ στ σimp ε0 εq r

Value 100 1e6 5e−6 7e−5 0.5 0.25 3

Table 1. Settings of the PF algorithm used in the experiments
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Fig. 2. Angle estimation (upper panel) and amplitude of the input
signal (lower panel) as a function of time. PF-OU: proposed PF
using OU dynamic model (RMSE = 1.78◦); PF-WP: proposed PF
modelling dynamics as a Wiener process (RMSE = 4.03◦); RS1-
SE: sign-error algorithm presented in [8] (RMSE = 5.35◦).

Fig. 2 shows the estimated head orientation angle as a function
of time for the proposed PF algorithm when modelling the dynamics
according to (7) and (8) (PF-OU), as a Wiener process (PF-WP) and
when estimating the head orientation using a simple sign-error algo-
rithm (RS1-SE). The input binaural signal is plotted below the results
to highlight its time variations. The RMSE values obtained for the
algorithms PF-OU, PF-WP and RS1-SE were, respectively, 1.78◦,
4.03◦ and 5.35◦. These values were calculated over all frames. It
is clear from the results, that the dynamic model plays an important
role in the PF tracking algorithm. When modelling the dynamics as a
Wiener process, some particles are propagated into unlikely head ori-
entations, leading the PF algorithm to overestimate the movements
and decreasing in that manner the performance substantially. We
can also see that while the sign-error algorithm looses track due to
variations in the signal and sudden changes of the head orientation,
the propose PF tracker is not only able to cope with multiple virtual
sources and noise, but also with silences and variations of the input
signal. Comparing the RMSE values obtained with each method, we
can see that in general, the PF-OU algorithm outperforms the PF-WP
and the RS1-SE approaches.

5. DISCUSSION

In this paper, we presented a PF approach to track the head orienta-
tion of the listener for a CCS using two microphones placed near the
ears of the listener. We derived a localization function that uses the
estimated ITD error between the input binaural signals and the sig-
nals at the microphone in subbands and converts the measurements
to an ITD error model based on the SHM. The head dynamics were
modelled as a Ornstein-Uhlenbeck process, which showed to be a
better approximation of the typical motions of the head. Based on
the localization function and the statistics of the noise of the dynamic
model, an importance function that depends on the current measure-
ments and the model was derived.

The proposed algorithm was evaluated throughout simulations,
where the head tracking was done while multiple virtual sound
sources were reproduced simultaneously and noise was present. As
opposed to a simple sign-error algorithm, the proposed PF algorithm
achieves a rather accurate tracking performance even when multiple
virtual sound sources are simultaneously reproduced. The selection
of dynamic model showed to be a critical design criteria for the
proposed head-tracker. Head dynamics are in the simulations better
described as an OU process than as the commonly used WP.

294



6. REFERENCES

[1] Y. Lacouture-Parodi and P. Rubak, “Objective evaluation of
the sweet spot size in spatial sound reproduction using elevated
loudspeakers,” J. Acoust. Soc. Am., vol. 128, no. 3, pp. 1045 –
1055, September 2010.

[2] Y. Lacouture-Parodi, A systematic study of binaural reproduc-
tion systems through loudspeaker: a multiple stereo-dipole ap-
proach, Ph.D. thesis, Aalborg University, 2010, ISBN: 978-
87-92328-47-2.

[3] W. Hess, “Head-tracking techniques for virtual acoustics ap-
plications,” in 133rd AES Conv., San Francisco, C.A., October
2012.

[4] M. Karjalainen, M. Tikander, and A. Härmä, “Head-tracking
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