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ABSTRACT 

 

This paper proposes a novel multichannel audio signal 

compression method based on tensor decomposition. The 

multichannel audio tensor space is established with three 

factors (channel, time, and frequency) and is decomposed 

into the core tensor and three factor matrices based on tucker 

model.  Only the truncated core tensor is transmitted to the 

decoder which is multiplied by the factor matrices trained 

before processing. The performance of the proposed method 

is evaluated with approximation errors, compression degree 

and listening tests. When the core tensor is smaller, the 

compression degree will be higher. A very noticeable 

compression capability will be achieved with an acceptable 

retrieved quality. The novelty of the proposed method is that 

it enables both high compression capability and backward 

compatibility with little signal distortion to the hearing. 

 

Index Terms— Multichannel, audio signal compression, 

tensor decomposition, tucker model, core tensor 

 

1. INTRODUCTION 

 

In the application field of digital audio, multichannel audio 

can provide more realistic surround experiences which 

stereo audio signals may fail to provide. As the need for 

enjoying high quality of digital audio signals, so does the 

need for more efficient audio compression technology. 

Many researches on digital audio coding are mono or stereo 

audio compression techniques. In order to generate surround 

effect with more channels, a number of multichannel audio 

storage techniques such as Dolby AC-3 [1], DTS (Digital 

Theatre System) [2], MPEG Surround (also known as SAC- 

Spatial Audio Coding) [3,4,5] have been proposed by using 

perceptual coding, transform or filter bank theory.  

Researches towards developing lower rate coders for 

multichannel surround audio systems will be stronger in 

many multimedia interactive applications such as virtual 

reality, teleconference and 3D game playing. The data size 

of multichannel audio signals is much higher compared to 

that of the stereo audio signals mostly because of the large 

number of channels. The work in this paper focuses on 

incorporating multilinear analysis [6] and tensor 

decomposition [7] for representing and compressing 

multichannel audio signals, which has not been considered 

in the relative prior work.  

Multilinear analysis has been proposed to manipulate 

the higher-order tensor structure of the observations by 

tensor algebra. The higher-order tensors are equivalents of 

multidimensional matrices, or multiway arrays, and have 

gained a lot of importance in the field of array data analysis. 

In our proposed method, the input multichannel audio signal 

is represented by 3-order tensor with three factors: channel, 

time and frequency. Then the tensor space is compressed 

into fewer channels and fewer frequency spectrum 

parameters by the way of low rank approximation based on 

tucker decomposition [7]. The multichannel audio can be 

recovered by the transmitted core tensor which is produced 

by tucker decomposition at the encoder and three factor 

matrices which are built from a set of training data. With 

decreasing the dimension of channel and frequency mode, 

high compression degree can be achieved with acceptable 

audio quality.  This novel multichannel audio signal 

compression method is based on higher-order tensor algebra, 

satisfying both high compression capability and backward 

compatibility in itself without additional side information. 

The remainder of this paper is organized as follows. 

Section 2 gives the preliminary tensor algebra that is used in 

this paper. Section 3 describes the tensor space construction 

of the multichannel audio signal. Section 4 presents the 

compression method based on tucker decomposition in 

detail. Section 5 shows the experiment designing and some 

test results; Section 6 concludes this paper. 

 

2. PRELIMINARY TENSOR ALGEBRA 

 

2.1. Basic tensor operations 

 

A tensor is a multidimensional array which represents an 

element of N-order multifactor space. The order of tensor is 

the number of dimensions or factors, also known as mode or 

way. The two important and basic operations of tensor are 

mode-n unfolding and mode-n product. 

The mode-n unfolding (mode-n flattening) is the 

matricization of the tensor 1 2 ... NI I I 
  in the subspace of 

mode n, which can be expressed as the flattened 

matrix
( )

nI I

nX


 , where
m n mI I . 
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The mode-n product includes tensor timing vector, 

matrix and another tensor, which can be processed based on 

the tensor matricization. In this paper, we only make use of a 

tensor times a matrix. The mode-n product of an N-order 

tensor 1 2 ... NI I I 
 by a matrix nJ I

U


 can be denoted 

by Y X n U   , which is still an N-order tensor of size 

1 1 1n n NI I J I I      . And this kind of tensor product 

can be expressed by matrix product using the mode-n 

unfolding as follows 

 

( ) ( )Y X n n nU Y UX       (1) 

 

2.2. Relative tensor decompositions 

 

There are many choices for tensor decompositions which 

generally combine a choice of orthonormal bases in the 

domain of tensor with a suitable truncation of its expansion. 

Two main kinds of tensor decompositions are CP 

(CANDECOMP/PARAFAC) and Tucker decomposition [7]. 

The latter one can be regarded as a multilinear 

generalization of the traditional matrix SVD (Singular Value 

Decomposition) [8] and plays an important role in tensor-

based signal processing. 

For an N-order tensor, a low rank-approximation with 

the truncated tucker decomposition is represented as 

 
(1) (2) ( )

1 2X G N

NU U U       (2) 

 

Where 1 2 ... NI I I 
 ,  ( )

1,2,..., ;n n

n n

I Rn
n N R IU


   

are the truncated components or factor matrices (usually 

orthogonal matrices) in mode-1, mode-2 and mode-n 

subspaces, respectively. 1 2G NR R R 
 is the core tensor 

whose entries show the level of interaction between the 

different components, and is computed with 

 
(1)T (2)T ( )T

1 2G X N

NU U U        (3) 

 

One advantage of tucker decomposition is that it can 

transform the original tensor into the core tensor with factor 

matrices. It is very useful in low rank approximation [8] and 

dimensionality reduction.  

 

3. REPRESENTATION OF MULTICHANNEL AUDIO 

SIGNALS WITH TENSOR SPACE 

 

In the latest 10 years, tensor algebra has been successfully 

used in the field of signal processing. When the signal 

information depends on more than one factor, a kind of 

tensor space can be established with different factors that 

stand for different subspaces.  For example, TensorFaces 

can be used for face recognition [9,10] , which are 

established based on four factors: subject , expression, 

viewpoint  and illumination. Recently, multilinear algebra 

with tensor representation has been attempted more and 

more in speech and audio signal processing [11,12,13,14]. 

This paper represents the mulitichannel audio space as 

3-order tensor T c t fN N N 
 with three factors: channel (c), 

time (t) and frequency (f). Here, Nc, Nt and Nf are the 

dimension of channel, dimension of time and dimension of 

frequency, respectively. There are more than two channels 

for each audio file, e.g. the signal with 5.1 channels has 6 

channels including FL (front left), FR (front right), FC (front 

center), LFE (low frequency effects), BL (back left) and BR 

(back right). Each channel has a sequence of signal frames 

along the time axis. Each frame can be transformed into 

spectrum along frequency axis. There are several commonly 

used transforms, including the Discrete Cosine Transform 

(DCT), the Fourier Transform (FT), and the temporal-

adaptive transform. This paper uses DCT to obtain positive 

frequency spectral values at the encoder and uses overlap-

and-add technique [15] to remove the waveform 

discontinuity after IDCT (Inverse DCT) at the decoder.  

Thus multilinear analysis can be carried out based on 

the multichannel audio tensor space. Most of the 

multichannel signals have spectrum correlations between 

channels and the spectrum amplitude correlations between 

frequencies.  Some special audio signals also have spectrum 

correlations between frames, but should be seriously 

stationary along time. The work presented in this paper will 

focus on removing the interchannel and the intrachannel 

redundancy for multichannel audio signals based on low 

rank approximation with tucker decomposition. 

 

4. THE PROPOSED COMPRESSION METHOD 

 

4.1. General description of the scheme 

 

The procedure of multichannel audio signal compression 

includes encoding and decoding. At the encoder, the input 

multichannel audio signal will firstly be transformed into 

frequency domain by DCT for all the channels and then 

tensor audio space (T) will be constructed and decomposed 

with tucker model which generates core tensor to be 

quantized and transmitted. The core tensor (S) looks like a 

kind of downmixed signal with fewer channels except that it 

is not an audio signal but stands for the compressed space of 

DCT spectrum parameters in the proposed scheme. Also the 

three factor matrices (Uc, Ut, Uf) will be generated by tucker 

decomposition, which need not to be transmitted to the 

decoder and are modeled by the training procedure. At the 

decoder, the received core tensor will be used to reconstruct 

audio tensor space based on the tucker model with the pre-

trained factor matrices. At the end, the multichannel audio 

signal will be retrieved from the reconstructed tensor space 

through IDCT and overlap-add procedure. Fig.1 shows the 

multichannel audio signal encoding and decoding procedure 

based on tensor decomposition. 
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Fig.1. The proposed compression scheme. 

 

4.2. Low rank approximation with tucker decomposition 

 

In order to compress the large information in multichannel 

audio signal, we propose to construct the audio tensor space 

and approximate it with low-rank tucker model which 

decomposes a tensor into a core tensor multiplied by a 

matrix along each mode.   

The 3-order audio tensor space is T c t fN N N 
 and the 

low rank approximation with tucker decomposition is  

 

1 2 3T S S; , ,c t f c t fU U U U U U         (4) 

 

Here,  c cN R

c c cU R N


  ,  t tN R

t t tU R N


  , and 

 f fN R

f f fU R N


  are the factor matrices (columnwise 

orthogonal) and S
c t fR R R 

  are the core tensor.  

And we will set up the above tucker model through the 

truncated HOSVD (Higher-Order SVD) [7] which computes 

the leading left singular vectors of the flattened matrix in 

each mode. When the factor matrices have been decided, the 

core tensor S can be obtained according to the equation (3). 
 

4.3. Training of factor matrices in different modes 

 

As is shown in Fig. 1, the three factor matrices (Uc, Ut, Uf) 

can be pre-trained before coding procedure. They stand for 

the principle components of the mode-n unfolding matrix 

and need not to be transmitted to the decoder. When training, 

the original dimensions (Nc, Nt and Nf) will be truncated to 

be lower dimensions (Rc, Rt and Rf). The different 

combination of dimensions (Nc, Nt, Nf, Rc, Rt and Rf) will 

lead to different trained models which should meet with the 

requirements when multiplying the core tensor S.  

In this paper, we use some multichannel audio signals 

which are different from the test signals to train the factor 

matrices obtained from tucker decomposition. For each 

training sample, a series of factor matrices will be generated 

based on the tucker decomposition. In order to eliminate the 

influences of music types, the different series of factor 

matrices obtained from different training samples will be 

averaged to generate the final trained models used for tensor 

reconstruction at the decoder. 

 

4.4. Transmission of core tensor information 

 

As is shown in Fig. 1, only core tensor should be transmitted 

to the decoder and be multiplied by the factor matrices with 

the trained models. The core tensor is smaller than the 

original audio tensor, i.e. has lower dimensions (Rc, Rt and Rf) 

along different modes. This paper will mainly investigate the 

compression degree caused by the tensor decomposition and 

will use 16 bits uniform PCM (pulse code modulation) 

method for the parameters’ quantizing and coding. 

 

5. EXPERIMENT RESULTS 

 

5.1. Experiment design 

 

Multichannel audio sources can be roughly classified into 

three categories [16]. Audio of class III consists of material 

recorded in a real space with multiple microphones such as 

DVD-audio and has considerably larger redundancy inherent 

among channels than that of class I and class II. In order to 

investigate the removal of interchannel redundancy, we only 

use the materials that belong to class III. We randomly 

selected 16 multichannel audio files from HIFI music 

soundtracks that stored in 5.1 channels DVD.  In which, 10 

files are used for training and 6 files are used for testing. The 

experimental results will be averaged among the test files. 

These audio files have 6 channels and 48 kHz sampling 

rate at a typical coding rate of 64 kbit/sec/ch. The window 

length is set to 960 samples (20ms) with 50% overlapping 

and the 960-points DCT will be used to get the spectral 

parameters. There are at most 899 overlapped frames in each 

channel and each audio file. When constructing the tensor 

space T c t fN N N 
 , the original dimensions are set to be 

Nc=6, Nt =899, and Nf=960. 

We have found that the available truncating in the way 

of time is very different for different audio samples and will 

seriously affect the retrieved quality of the multichannel 

audio signal. In the experiments, we only investigate the 

performance of tensor truncating in the way of channel and 

frequency. Thus the truncated dimension Rt is set to be equal 

to the original dimension Nt along the time axis. The other 

two truncated dimensions Rc, Rf can be set to be different 

values to investigate the performances below. 

 

5.2. Relative approximation error 

 

In the applications of tensor decomposition, the relative 

approximation error between the low rank tensor Tr and the 

original one T can be expressed in Frobenius norm 

 

rT-T Te 
   

 (5) 

Here, the Frobenius norm of tensor T c t fN N N 
 is the 

square root of the sum of the squares of all its elements z, i.e., 
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1 2 3

1 2 3

2

1 1 1

T
fc t

NN N

i i i

i i i

z
  

         (6) 

 

Table 1 Approximation errors with different Rc and Rf 

Rc         Rf 800 400 200 

6 0.002982 0.054510 0.151910 

4 0.002989 0.054516 0.151916 

2 0.003004 0.054517 0.151917 

1 0.493783 0.599367 0.620283 

 

From Table 1, we can see that the approximation errors 

are very small when only measuring the tensor 

reconstruction performance not the audio quality. And the 

errors are very close among 2 channels, 4 channels and 6 

channels, which means that 5.1 channels of class III can be 

truncated to 2 channels with little distortion. Also the 

approximation errors can be acceptable (below 0.1) when 

there are at least 2 channels and 400 DCT points. 

 

5.3 Compression capability 

 

In order to further understand the storage space savings of 

the multichannel audio information ， the compression 

degree is calculated according to the following formulas 

 

1 2
100%

1

100%

1 100%(with )

c t f c t f

c t f

c f

t t

c f

b b
r

b

N N N R R R

N N N

R R
N R

N N


 

    
 

 

 
      

 (7) 

 

Where b1 and b2 are the bits for encoding parameters in 

the original and the improved scheme, respectively. In order 

to evaluate the compression performance caused by the 

tensor decomposition, the original audio tensor and the low 

rank tensor are both quantized with PCM method. Thus the 

compression degree can be expressed with the dimension of 

each mode as shown in equation (7). With Rc and Rf smaller, 

the compression degree is higher. 

 

Table 2 Compression degree with different Rc and Rf 

Rc         Rf 800 400 200 

6 16.7% 58.3% 79.2% 

4 55.6% 72.2% 86.1% 

2 72.2% 86.1% 93.1% 

1 13.9% 93.1% 96.5% 

 

From Table 2, we can see that higher compression 

degree is obtained when the truncated dimension is lower 

which means the core tensor is smaller. For example, the 

compression degree arrives at a very high degree of 86.1% 

at the condition of 2 channels and 400 DCT points. 

 

5.4. Subjective quality test 

 

We carried out MUSHRA (MUlti Stimulus test with Hidden 

Reference and Anchor) [17] subjective listening test to 

evaluate the retrieved audio quality at different conditions 

with 5.1 channels loudspeakers. Fig.2 shows the mean 

MUSHRA score and the 95% confidential interval with 6 

test audio files and 10 listeners.  

 
Fig.2. MUSHRA test results of different conditions. 

 

By subjective listening test, we can see that the 

retrieved audio quality can be acceptable when the channels 

are truncated very largely. Referring to Table 2, when the 

compression degree is increased to 86.1%, the subjective 

audio quality can also be acceptable with an average score 

of 78.7 at the condition of 2ch_400DCT. 

 

6. CONCLUSIONS 

 

This paper proposed a novel method for multichannel audio 

signal compression by using tensor decomposition for 

deriving the truncated core tensor to be transmitted and the 

factor matrices to be pre-trained. The multichannel audio 

signal was decomposed and retrieved with tucker model. 

The experiment results showed that the proposed tensor-

based compression method can achieve noticeable high 

compression capability with acceptable listening quality.  

For further improvements of the multichannel audio signal 

compression, the optimization of tensor decomposition and 

the optimized tensor rank are the key issues to be 

investigated. Also, the parameters’ coding method and the 

factor matrices’ training method are important to advance 

the compression capability. 
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