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ABSTRACT

Head-Related Transfer Function (HRTF) representation and interpo-
lation is an important problem in spatial audio. We present a ker-
nel regression method based on Gaussian process (GP) modeling
of the joint spatial-frequency relationship between HRTF measure-
ments and obtain a smooth non-linear representation based on data
measured over both arbitrary and structured spherical measurement
grids. This representation is further extended to the problem of ex-
tracting spectral extrema (notches and peaks). We perform HRTF
interpolation and spectral extrema extraction using freely available
CIPIC HRTF data. Experimental results are shown.

Index Terms— Gaussian Process Regression, Head-Related
Transfer Function, Interpolation, Spectral Extrema.

1. INTRODUCTION

The human ability to accurately localize a sound source in a three-
dimensional world is due to the fact that the source’s acoustic wave
scatters on the listener’s anatomic features (torso, head, and outer
ears). Because of asymmetries of those features, the scattering pat-
tern – and thus the sound that actually reaches the eardrum – de-
pends on the direction of sound arrival. The quantitative measure of
how the sound is modified by such scattering is called Head-Related
Transfer Function (HRTF) [1]. HRTF knowledge enables one to re-
construct life-like auditory scenes; however, due to physical differ-
ences between individuals, HRTF is largely person-specific.

Many research labs around the world have measured HRTF for
actual human subjects. The common feature of those measurements
is that they have very little in common. Indeed, each lab has its
own measurement apparatus; its own sampling frequency, excita-
tion signal, and operating environment; and most importantly its own
HRTF measurement grid. The latter is particularly troublesome be-
cause high-quality spatial audio reproduction of a moving acoustic
source requires an HRTF measured at uniformly high spatial resolu-
tion, which is rarely the case due to time/cost issues and peculiarities
of each particular measurement setup/process (in particular, the area
below the subject, referred to later as the bottom hole, is almost never
measured except for some mannequin studies; Figure 1 illustrates a
typical HRTF measurement grid).

We propose a non-parametric, joint spatial-frequency HRTF rep-
resentation that is well-suited for interpolation and can be easily ma-
nipulated. The model uses prior data (i.e., HRTF measurements) to
infer HRTF for a previously unseen location or frequency. While
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this approach is general enough to consider the HRTF personaliza-
tion problem, here we apply it to representing a single-subject HRTF.
In section 2, we formulate the interpolation problem as a Gaussian
process regression (GPR) [2] between the input spatial-frequency
coordinate domain (ω, θ, φ) and the output HRTF measurement1

Hω(θ, φ).
The GPR approach is non-parametric but does require the spec-

ification of a covariance model, which should reflect prior knowl-
edge about the problem. Empirical observations suggest that HRTF
generally varies smoothly both over space and over frequency co-
ordinates. In section 3, two covariance functions are presented to
model HRTF smoothness. GPR also enjoys the advantage of au-
tomatic model selection via marginal-likelihood optimization using
Bayesian inference – a feature that other methods do not possess.
Our model also has a natural extension to the automatic extraction
of spectral extrema (such as peaks and notches) used in [5, 6] for
simplifying the HRTF representation. In section 4, we outline the
extrema localization algorithm. Finally, in section 5 we compare
our model to other spherical interpolation techniques [7, 8] using the
CIPIC database [9] data and illustrate the behavior of the extrema
extraction algorithm for varying values of noise estimate in GPR.

Fig. 1. Sample (CIPIC database) HRTF measurement grid.

Related Work: The simplest HRTF interpolation methods oper-
ate in frequency domain and perform weighted averaging of nearby
HRTF measurements [10, 11, 12] using the great-circle distance;
smoothness constraint is not addressed. More advanced methods
are based on spherical splines [13, 14]; these methods attempt to
fit the data points while keeping the resulting interpolation surface
smooth. Other interpolation methods represent HRTF as a series of
spherical harmonics [15, 16] (which has the advantage of obtain-

1Through the current paper, we use the term HRTF measurement to refer
exclusively to the magnitude part as HRTF can be reconstructed from mag-
nitude response using min-phase transform and pure time delay [3, 4].
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ing physically-correct interpolation but is hard to apply in the typi-
cal case of bottom-hole measurement grid) or decompose HRTF in
the principal component space [17, 18] and interpolate the decom-
position coefficients over nearby spatial positions. In all of these
methods, smoothness over frequency coordinate is not considered.
The recent paper [19] has introduced a method of further decom-
posing the spherical harmonics representation into a series on fre-
quency axis as well, implicitly making the interpolant smooth as
the consequence of smoothness of the spectral basis functions. In
the GPR method proposed in the current paper, we make the com-
bined spatio-spectral smoothness constraint explicit, derive the cor-
responding theory, and compare our approach with the ones above
in terms of interpolation/approximation error.

2. GAUSSIAN PROCESS REGRESSION

In a general regression problem, one predicts a scalar target variable
y from a D-dimensional vector x of independent variables based on
a collection of available observations (measurements). A common
model assumes that the observation y is generated by an unknown
latent function f(x) and is corrupted by additive (Gaussian) noise

y = f(x) + ε, ε ∼ N (0, σ2), (1)

where the noise term ε is zero centered with constant variance
σ2. Placing a GP prior distribution on the latent function f(x)
enables inference and encodes several useful properties such as
local smoothness, stationarity, and periodicity. For any subset of
inputs X = [x1, . . . , xN ], the corresponding vector of function
values f = [f(x1), f(x2), . . . , f(xN )] has a joint N -dimensional
Gaussian distribution that is specified by the prior mean m(x) and
covariance K(xi, xj) functions

f(x) ∼ GP (m(x),K(xi, xj)), m(x) = 0,

K(xi, xj) = Cov(f(xi), f(xj)).
(2)

The joint distribution between N training outputs y and N∗ test out-
puts f∗ under the GP prior is[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2I K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
,

Kff = K(X,X), K̂ = Kff + σ2I,

Kf∗ = K(X,X∗), K∗∗ = K(X∗, X∗),

(3)

where K(X,X) and K(X,X∗) are N ×N and N ×N∗ matrices
of covariances evaluated at all pairs of training and test inputs re-
spectively. From Eq. 3 and marginalization over the function space
f, we derive that the set of test outputs conditioned on the test inputs,
training data, and training inputs is a normal distribution given by

P (f∗|X, y,X∗) ∼ N (f̄∗, cov(f∗)),

f̄∗ = E[f∗|X, y,X∗] = KT
f∗K̂

−1y,

cov(f∗) = K∗∗ −KT
f∗K̂

−1Kf∗.

(4)

Thus, the interpolant f̄∗ for inputs X∗ in Eq. 4 is computed from
the inversion of the covariance matrix K̂ specified by the covariance
function K, its hyperparameters, and control points (i.e. training
outputs y). Model-selection is an O(N3) runtime task of minimizing
the gradient of the negative log-marginal likelihood function w.r.t. a
hyperparameter Θi:

log p(y|X) = −1

2

(
log |K̂|+ yT K̂−1y +N log(2π)

)
,

∂ log p(y|X)

∂Θi
= −1

2

(
tr
(
K̂−1P

)
− yT K̂−1PK̂−1y

)
,

(5)

where P = ∂K̂/∂Θi is the matrix of partial derivatives.

3. COVARIANCE FUNCTIONS

The GP prior covariance function encodes the assumed constraints
on the latent function f . In particular, the degree of correlation
between any subset of outputs (i.e., the smoothness, which is the
desired interpolation property) is fully specified by the GP prior
as a function over the input domain and a hyperparameter set.
We propose to model the single magnitude HRTF as an Ornstein-
Uhlenbeck (OU) [20] process, resulting in a GP with stationary
auto-covariance and spectral density (modified to use positive defi-
nite inverse-quadratic radial basis) functions given by

Kt(ti, tj) = e−|ti−tj |/λ, Kω(ωi, ωj) =
1

λ2 + (ωi − ωj)2
, (6)

where (t, ω) are time and frequency (inputs) and λ the characteris-
tic length-scale hyperparameter. The λ term in the OU process is the
rate of mean reversion or drift to zero of a solution to a stochastic dif-
ferential equation with standard Brownian motion. OU description
agrees with the fact that the HRTF in time domain decays quickly to
zero after the initial onset and is thus reasonable.

For estimating the joint magnitude responses for the same fre-
quency, the spatial component of the cross-spectral density can be
modeled as a function of spherical coordinates (θ, φ) that must be
expressible in the proper spherical basis [21]. The family of isotropic
covariances restricted to distances in R3 such as chordalCh given by

Ch = 2

√
sin2

(
θj − θi

2

)
+ sin θi sin θj sin2

(
φi − φj

2

)
(7)

is valid on the unit sphere [22, 23]. The hyperparameter ` can be in-
terpreted as the distance for function values to become uncorrelated
w.r.t. an axis in the input domain. We remark that the covariance
function’s relation to the spherical harmonics basis Y mn (θ, φ) fol-
lows the Legendre addition theorem,

K(θi, θj , φi, φj) =

∞∑
n=0

bn
4π

2n+ 1

n∑
m=−n

Y mn (θi, φi)Ȳ
m
n (θj , φj),

where coefficient bn depends on the choice and parameterization of
K. This provides a way to represent the GP interpolant f̄∗ in the
spherical harmonics basis (as it is just a weighted combination of
covariance evaluations).

3.1. Frequency-Independent Model

First, we consider the case of frequency independent GP. For a fre-
quency ω ∈ X(ω), the function fω with a GP stationary isotropic ex-
ponential covariance prior Kω(θi, θj , φi, φj) = α2

ωe
−Ch/`

2
ω is in-

dependently specified over spatial locations (θ, φ) ∈ X(θφ). The hy-
perparameters (`ω, αω) are trained independently at each frequency
via log-marginal likelihood optimization of the HRTF measurements
following Eq. 5, and prediction of posterior means at new spatial-
frequency locations X∗ = (θ∗, φ∗, w∗) requires the evaluation of
f̄ω∗ in Eq. 4 using the available measurements in X(θφ).

Figure 2 presents sample CIPIC database HRTF plots for a sin-
gle frequency using a Mercator projection from a sphere to a cylin-
der. The GP length-scale hyperparameters are trained in 50 iterations
and the noise estimate σ = 0.05 is fixed. Note that the input data
set contains no measurements below a certain elevation and that the
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sampling is denser near the interaural poles. The posterior means
(i.e., the interpolated HRTF) over the full sphere of directions, in-
cluding the bottom hole, are generated by inference (top plot). The
posterior variances (bottom plot) depend only on the measurement
point spacing. It can be seen that a contour map outlines an area
of high confidence (dense areas around the poles) and another, low
confidence one (bottom hole where measurements are absent).
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Fig. 2. GP mean (top) and variance (bottom) at 7.5 kHz. Data:
CIPIC subject 003, right ear. Blue markers are the control points.

3.2. Joint Spatial-Frequency Model

In the more complicated case of a joint spatial-frequency covariance
function, we specify the single GP covariance prior for the function
f as the product of OU density in Eq. 6 and exponential covariance
function of chordal distance in Eq. 7 given by

K(θi, θj , φi − φj , ωi − ωj) =
α2

λ2 + (ωi − ωj)2
e
−Chij

/`2
, (8)

The measurement set as a Cartesian outer-product X = X(θφ) ×
X(ω) allows the Gram matrixKff to be decomposed into Kronecker
tensor products Kff = K1 ⊗ K2, where matrices K1 and K2 are
covariance evaluations on separate domainsX(θφ) andX(ω) respec-
tively. The inverse covariance matrix with additive white noise is
given by the Kronecker product eigendecomposition

K̂−1 = (UZUT + σ2I)−1 = U(Z + σ2I)−1UT ,

Ki = UiZiU
T
i , U = U1 ⊗ U2, Z = Z1 ⊗ Z2,

(9)

which consists of eigendecompositions of smaller covariance matri-
ces Ki ∈ Rmi×mi ; the total number of samples is N =

∏2
i=1mi.

Efficient Kronecker methods [24] reduce costs of inference and hy-
perparameter training in Eqs. 4 and 5 fromO(N3) toO(

∑2
i=1m

3
i+

N
∑2
i=1mi) and storage from O(N2) to O(N +

∑2
i=1m

2
i ) .

This formulation allows the whole HRTF set of a single subject
to be jointly modeled as a Gaussian distribution in a tractable manner
under the assumption that the hyperparameters (α, λ, `) are constant
over space and frequency. The shared noise parameter σ can be esti-
mated as well by treating it as a hyperparameter in Eq. 5. Inference
at a new input X∗ = (ω∗, θ∗, φ∗) is the direct evaluation of f̄∗ in
Eq. 4.

4. SPECTRAL EXTREMA EXTRACTION

By definition, the spectral extrema correspond to the zero-crossing of
the GP interpolant gradient. The surface gradient and the necessary

covariance derivatives w.r.t. frequency ω∗ are expressed in the closed
form as

∂f̄∗
∂ω∗

=

[
∂K1∗

∂ω∗
, . . . ,

∂KN∗

∂ω∗

]
K̂−1y,

∂Ki∗

∂ω∗
=
−2α2(ω∗ − ωi)

(λ2 + (ω∗ − ωi)2)2
e−Chi∗/`

2

,

∂2Ki∗

∂ω2
∗

=
−2α2(λ2 − 3(ω∗ − ωi)2)

(λ2 + (ω∗ − ωi)2)3
e−Chi∗/`

2

.

(10)

Zero-crossings of the gradient signify spectral notches and peaks;
these can be further distinguished by the sign of the second deriva-
tive. The second partial derivative can be computed in a similar fash-
ion. We use an iterative Newton-Raphson method

ωn+1 = ωn −
∂f̄ωn

∂ωn
/
∂2f̄ωn

∂ω2
n

, |ωn+1 − ωn| > τ, (11)

for locating zeros of the interpolant gradient in Eq. 10. The method
was found to converge in a few iterations using a termination thresh-
old of 10−5. The initial guesses ω0 are spaced uniformly in the
frequency domain.

5. EXPERIMENTS

We use data from the CIPIC database (subject 003, right ear) in the
experimental evaluation; HRTF is computed using DFT of the im-
pulse response. The measure of the interpolation error is the signal-
to-distortion ratio (SDR) [25] averaged over all prediction directions
(θi, φi):

SDRω = 10 log10

∑N∗
i=1Hω(θi, φi)

2∑N∗
i=1(Hω(θi, φi)− Ĥω(θi, φi))2

, (12)

where Hω(θi, φi) = yω,θi,φi is the observation and Ĥω(θi, φi) =
f̄ω,θi,φi is the predicted magnitude response. GP hyperparameters
are trained using gradient descent with resilient back-propagation
[26] for 50 iterations. The accuracy of GPR interpolation is evalu-
ated in comparison with that of weighted nearest-neighbor, spherical
spline, and spherical harmonics based interpolation methods.

5.1. HRTF Interpolation

In the first experiment, HRTF over a randomly-chosen half of 1250
CIPIC grid directions comprise the “measurement” data set for each
subject; covariance hyperparameters are trained; GPR is used to in-
fer the HRTF for the the remaining directions; and the prediction er-
ror is computed. The task measures how well the global interpolant
is suited for the case of a randomized measurement grid. SDR plots
for all interpolation methods are shown in Figure 3; high SDR cor-
responds to a good reconstruction. For the spherical spline method
[27], the default smoothing parameter (1e-5) and the default number
of expansion terms (50) are used. For the spherical harmonic fit-
ting [15], truncated SVD regularization method is used as described.
The results show that both frequency-independent and joint spatial-
frequency GPR models with Bayesian model selection outperforms
all other methods in the 2− 20 kHz frequency range.

For the second experiment, we simulate missing data in a large
spatial area (an open hole task [28]). We remove all measurements
that lie above certain horizontal plane (spherical incident angle θ <
π/5), essentially cutting off the top portion of the sphere of direc-
tion. There are a total of 147 measurement directions in the cut-off
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Fig. 3. SDR (dB) for the random half-set interpolation task. Larger
values indicate better performance.

area. The interpolant is computed over the rest of measurements, is
evaluated in the hole area, and the SDR is computed. This task sim-
ulates the HRTF prediction in the areas where data is not available
(such as the bottom hole in most HRTF measurement grids). The
SDR across each frequency are shown in Figure 4. Our two GPR
models exhibit similar performance and are better than other meth-
ods across most of the frequency range. The loss of accuracy in the
12− 16 kHz band for global interpolation methods is due to the fact
that at those frequencies, the head shape related HRTF features in
“above-head” area become almost independent of pinna-related fea-
tures prominent at low elevations. Non-stationary and non-separable
cross frequency-spatial covariances may be necessary to further im-
prove the performance of our joint model in comparison with the
frequency-independent approaches.
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Fig. 4. SDR (dB) for the hole extrapolation task.

5.2. Extraction of Spectral Features

The spectral extrema extraction process in section 4 depends on the
GP interpolant and its trained hyperparameters. The noise estimate
σ could be learned within the GP model; however, often it is simply
set to a fixed value using prior knowledge, enforcing a certain de-
gree of smoothness on the interpolant. An example of how varying
the noise term influences the interpolant and its extrema is shown in
Figure 5. When the noise term σ is small, the GP predicted means
tend towards observations. As it increases, the interpolant is allowed
greater deviation and the number of extrema found becomes smaller;
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Fig. 5. GP spectral extrema extraction example. Data: CIPIC subject
003, right ear, direction (87.6◦,−65.1◦). Top 2 plots: σ = 0.05.
Middle 2 plots: σ = 0.10. Bottom two plots: σ = 0.20.

only the most salient peaks and notches are detected with large σ
because of the smoothing effect. The phenomenon is apparent for
many extrema in the 8− 20 kHz that are present in σ = {0.05, 0.1}
case but disappear for σ = 0.2. Thus, the consistency of extrema
existence at various values of σ can be interpreted as a measure of
feature saliency at the corresponding frequency.

6. CONCLUSIONS

We have presented a joint spatial-frequency GPR model with sep-
arable covariances for a single-subject HRTF representation and
interpolation. The proposed method achieves better interpola-
tion/extrapolation accuracy in comparison with other existing spher-
ical interpolation methods. We extended the GPR model to HRTF
spectral extrema extraction and explored a saliency metric using
different GPR noise estimates. Future work is planned for more
complex joint covariance models and multi-subject personalization.
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