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ABSTRACT

This paper concerns the development of a music dictionary-based
model for summarizing local feature descriptors computed over
time. Comparing to a holistic representation, this text-like, bag-
of-frames representation better captures the rich and time-varying
information of music. However, the dictionary used in classical bag-
of-frames model only captures frame-level elements of the music;
thus, there exists a semantic gap between the dictionary element and
commonly seen music description. In order to reduce the gap, a new
feature representation called dual-layer bag-of-frames is proposed in
this paper. It models the music with a two layer structure, where the
first-layer dictionary captures the frame-level characteristics, and the
second-layer dictionary captures the segment-level semantics. This
hierarchical structure resembles the alphabet-word-document struc-
ture of text. Our result demonstrates that the proposed dual-layer
bag-of-frames feature achieves state-of-the-art accuracy of music
genre classification. The classification accuracy for the GTZAN
benchmark reaches 86.7% with dictionary trained from GTZAN,
and 83.6% with dictionary trained from another data set USPOP.

Index Terms— Sparse coding, deep structure, audio alphabets,
audio words, music genre classification

1. INTRODUCTION

Over the recent years, the “bag-of-frames” (BoF) model has been
shown useful in a variety of music information retrieval (MIR) tasks
[1–6], owing to its ability to represent music information that hap-
pens in a short temporal moment (e.g., “guitar solo”) [2]. It preserves
the information by representing each music piece as a histogram over
a dictionary of music “elements,” or codewords, selected or learnt
from a music collection [7, 8].

However, in the classical BoF model, the dictionary is trained
from frame-based features/representations such as MFCC, sono-
grame, or spectrogram,1 which capture the characteristics of the
sound only at frame-level [9]. Accordingly, such frame-level dic-
tionary elements might be unable to directly represent some of the
music descriptions (e.g., “metal”, “blast beat”) due to its lack of
long term information. This can be viewed analogously as trying to
capture the semantic of a text document with a dictionary containing
only letters.

In order to close the gap and produce more meaningful dic-
tionary elements, we propose a new BoF-based feature, called
dual-layer BoF (DLBoF), which attempts to capture the segment-
level semantics of music signals by a two layer structure. The
first-layer dictionary captures the frame-level music characteristics,

1The frame size setting for these features/representations is usually 23–92
ms for MIR appreciations [9].

and the second-layer dictionary captures the combinations of frame-
level music characteristics. Similar to the alphabet-word relation in
text document, if we define the frame-level music characteristic as
audio-alphabet, the second-layer dictionary contains a list of combi-
nations of audio-alphabets, giving rise to the notion of audio-words.
Comparing to the conventional single-layer, flat structure, this deep
architecture better represents the information of music [10]. Eval-
uation on the a genre classification benchmark data set shows that
fusing the audio-word based BoF with the audio-alphabet based BoF
(i.e., DLBoF) leads to considerable improvement in the accuracy of
genre classification, comparing to using the audio-alphabet based
BoF alone.

Such a multi-layer structure is conceptually similar to deep be-
lief net (DBN), where each layer of DBN extracts salient information
at different timescales [10–13], and related to multi-scale temporal
fusion, where the frame-based features/representations are pooled at
different time scale and then fused together [14, 15]. However, we
opt for the sparse-coding (SC) based approach for one can combine
any dictionary learning method with sparse coding [16].

2. RELATED WORK

A number of algorithms have been proposed for implementing BoF
models for music feature extraction. For instance, McFee et al. [4]
employed kmeans to cluster a collection of frame-level MFCC vec-
tors and used the cluster centers for vector quantization (VQ). The
histogram representation of a song is constructed by counting the
frequency with which each dictionary element quantizes the bag of
MFCC vectors of that song. Yeh et al. [7] performed a systematic
evaluation on various BoF-related algorithms, and found that cou-
pling log-power spectrogram with sparse coding and online dictio-
nary learning (ODL) [17] shows relatively better result. Based on
their finding, the proposed DLBoF model is implemented by refer-
ring to their best setup, which consists of using spectrogram as the
local descriptor, sparse coding as the encoding algorithm, and ODL
for dictionary learning.

Sparse coding (SC) algorithms have also been utilized for con-
structing the codebook for music [18–24]. SC seeks to mimic the
human’s sensory system by forming codes that are sparse in sup-
port (with most coefficients being zero), yet contain sufficient in-
formation to reconstruct or to interpret the input signals. People
are interested in sparse representations or sparse models, because
they lead to codewords that are “neurally plausible,” or that can
be explained [21]. As first demonstrated by Smith et al. [25], au-
dio codewords learnt by using the matching pursuit (MP) algorithm
for sparse decomposition show striking similarities to time-domain
cochlear filter estimates. Therefore, in addition to the discriminative
power, SC leads to codewords that are higher in interpretability.
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To the best of our knowledge, this work represents one of the
first works that learns multiple layers of codebooks for music signals
using online dictionary learning [17]. In addition, the notions of
frame-level audio alphabets and segment-level audio words have not
been proposed before.

3. DICTIONARY-BASED FRAME WROK

The dictionary-based classification system requires a set of labeled
songs for classifier training, and a set of unlabeled songs for dictio-
nary training. It uses the unlabeled set to train the dictionary; then
uses the dictionary on the labeled set to generate BoF-based features.
After that, the extracted feature can be used with the label informa-
tion to train a classifier, and the resultant classifier can be tested on
a testing set to measure the performance. The detail of each system
component is described below.

3.1. Sparse Coding and Dictionary Learning

Given an input signal vector x ∈ R
m, the sparse representation prob-

lem can be mathematically formulated as

α∗ = argmin
α

1

2
‖x−Dα‖22 + λ‖α‖1, (1)

where α ∈ R
k is the sparse coding of x, D ∈ R

m×k is a given
dictionary, and λ is a turning parameter for the trade-off between α’s
sparsity and the representation accuracy. Typically λ is set to 1/

√
m

for that is the classical normalization factor [17], where m is the
feature dimension of x. This problem is usually referred to as basis
pursuit or Lasso in the machine learning and statistics literature [26].
It can be solved efficiently by off-the-shelf programs such as LARS-
lasso [27].

It has been shown that using a learnt dictionary instead of a pre-
defined one improves the performance of sparse coding as the learnt
one is more adapt to the data being processed [17]. The dictionary
learning problem can be formulated as

D∗ = argmin
D∈C

1

n

n∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
, (2)

where xi denotes the i-th signal among a dataset of n signals, and
C � {D ∈ R

m×k} is a set of convex matrices in which the l2
norm of each column dj is not larger than one, i.e., dTj dj ≤ 1, ∀j.
This constraint is imposed to constrain the energy of the dictionary
elements. The formulation in Eq. 2 is a joint optimization problem
in α and D, and a natural solution is to optimize the two variables in
an alternating fashion.

In this work, we employ the first-order stochastic gradient de-
scent algorithm called online dictionary learning (ODL) [17] to solve
this joint optimization problem. ODL is known to be more scalable
than standard second-order batch algorithms for its relatively lower
computational cost, memory consumption, and capability of learn-
ing in an online, rather than batch, fashion.

3.2. Single-layer Bag-of-Frames Model

The system diagram of the classical BoF model encoding is shown
in Fig. 1. We use the term single-layer BoF (SLBoF) to describe
this model oppose to the proposed DLBoF model.

For the dictionary training process, all the training song is first
converted into spectrograms. The frame size and overlap for Fast

Fourier transform are 1,024 and 50% respectively. Then, the dictio-
nary is trained with ODL from the extracted spectrograms (cf. Sec-
tion 3.1). Once we have the dictionary, any given digital music can
be encoded by first converting it into spectrogram. Then, the sparse
coding of the music is calculated from the spectrogram in a frame-
by-frame fashion. Next, the individual frame-level sparse coding is
aggregated together (BoF aggregation) to form a histogram repre-
sentation (cf. Section 3.5). Finally, the histogram is first normalized
with power normalization, then Manhattan normalization (i.e., sum-
to-one normalization); the result vector is the SLBoF of the input
digital music.

3.3. Dual-layer Bag-of-Frames Model

As shown in Fig. 1, after the first-layer dictionary is constructed,
the first-layer dictionary is used to encode all the training songs with
sparse coding. The resultant sparse coding is aggregated with bag-
of-histogram aggregation (BoH aggregation), converting the frame-
level sparse coding into segment-level histogram representation. In
consequence, each training song is represented with multiple his-
tograms. Next, each histogram is power normalized, and used to
train the second-layer dictionary with ODL. In the end, we have a
first-layer dictionary trained from spectrograms and a second-layer
dictionary trained from histograms.

With both dictionaries trained, the encoding process starts with
converting the given digital music’s spectrogram to first-layer sparse
coding with the first-layer dictionary. After BoH aggregation and
power normalization, the resultant vectors are converted to second-
layer sparse coding with the second-layer dictionary. Lastly, the
sparse coding from both layers are aggregated and concatenated to
form a histogram representation, which is normalized with power
normalization and Manhattan normalization again, leading to the
DLBoF representation of the input digital music.

3.4. Power Normalization

Given an input feature vector w ∈ �k, the power normalization can
be calculated with

w∗ = sign(w)|w|a , (3)

where sign(·) is the sign function and a ∈ [0, 1] is a pre-set param-
eter, and Jégou et al. [28] has empirically determined that a = 0.5
constantly leads to near-optimal results. Such transformation has
been shown to increase the performance for a BoF based image
search system, due to its ability to reduce the influence of bursty
visual elements. It can also be interpreted as variance stabilizing
transform, which corrects the dependence between the variance and
the mean. It has been applied to BoF, GMM, and Fisher vector; these
power normalized feature vectors yield improved performances
comparing to their original version [28].

3.5. Bag-of-Histogram Aggregation

It has been found that partitioning a song into short segments, each
span a number of frames, and generate feature based on the segmen-
tation usually improves the classification accuracy [29, 30]. These
segments are called “texture windows” by Tzanetakis et al. as it
should correspond to the minimum time amount of music that is
necessary to identify a particular music’s timbre, pitch, and loud-
ness [29]. To capture the change of music texture, we aggregate the
first-layer sparse coding over a texture window and represent a song
as a bag-of-histograms.
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Fig. 1. The system diagrams of the encoding for bag-of-frames models.

In addition to using a fixed-length texture window for segmenta-
tion, another segmentation method we adopted for BoH aggregation
is the MIRsegment algorithm implemented in the MIRtoolbox [31].
Specifically, we compute the similarity of the low-level feature vec-
tors of every two frames in a song to construct a similarity matrix,
from which the so-called “checkerboard” patterns can be observed
from the main diagonal if there are segmental boundaries. The two
segments beside the boundary produce two adjacent square regions
of high within-segment similarity along the main diagonal and two
square regions of low between-segment similarity off the main diag-
onal. To detect such pattern, a Gaussian-tapered checkerboard kernel
is correlated along the main diagonal of the similarity matrix, and
the so-called novelty curve can be calculated [32]. Since the peaks
of the novelty curve indicate points of highly dissimilarity adjacent
segments, these peaks can be identified as possible boundaries. Typ-
ically, the segment size is between 2–10 seconds.

4. EXPERIMENTS

We evaluate the performances of the BoF-based features on music
genre classification, one of the most well studied problems in MIR.
GTZAN is the most used benchmark dataset; it is composed of 1,000
30-second clips covering ten genres, with 100 clips per genre [29].2

Each song is converted to a standard mono-channel and 22,050 Hz
sampling rate WAV format before experiments, a common practice
in MIR. Evaluation on GTZAN is typically conducted using a strati-
fied 10-fold cross validation. The performance is measured in terms
of the (average) classification accuracy.

However, GTZAN is problematic when used as an exemplary
dataset for testing music genre classification systems. The three
problems brought up by Sturm et al. [33] are repetition, mislabel-
ing, and distortion. Additionally, it is debatable on whether genre
recognition is a well-defined problem since the definitions of cer-
tain genres varied as the society changes. As a 10-year-old data set,
10.6% of GTZAN clips are mislabeled based on contemporary stan-
dards. Consequently, it may not be an ideal data set for studying
music genre recognition, but a handy preliminary test bed for com-
paring a newly proposed method with existed methods because all
the MIR systems tested on GTZAN had to face the same problems.
As the main goal of this work is to perform an initial study on the
proposed BoF feature, we use GTZAN for performance evaluation.
In order to better assess the new feature, conducting experiments on
other MIR tasks is in order.

4.1. Single-layer Model, Normalization, Kernel & Efficiency

We first examine the effectiveness of power normalization on
GTZAN. The feature vector is generated based on the SLBoF model
describe in Section 3.2. The dictionary is trained with GTZAN,

2The datasets are available at http://opihi.cs.uvic.ca/
sound/genres.tar.gz. The genre classes contain classical, country,
disco, hiphop, jazz, rock, blues, reggae, pop, and metal.

Table 1. The effect of power normalization on the genre classifica-
tion accuracy; where Pow stand for power normalization.

Pow No Pow
Acc Time Acc Time

LIBSVM+HIK 82.2 119.6 81.1 146.2
LIBSVM+Linear 77.8 67.5 71.9 76.0
LIBLINEAR(Primal) 78.3 19.7 71.7 31.8
LIBLINEAR(Dual) 78.4 6.8 71.6 16.6

Table 2. Performance of dual-layer bag-of-frames model comparing
to other models under different experiment settings. The bold font
face indicates that the setup is significantly better than its first-layer
counterpart (p-value < 0.05).

Linear SVM HIK SVM
2.5s 5s MIR 2.5s 5s MIR

G
T

Z

First 76.8 82.7
Second 70.7 66.6 72.7 81.0 79.2 82.4
Dual 79.2 78.1 78.6 85.2 84.4 85.7
Late 77.8 78.1 77.5 84.1 83.8 85.5

U
SP

First 81.5 83.3
Second 74.2 70.1 77.3 73.8 69.3 76.2
Dual 82.2 81.6 81.7 81.9 82.3 82.7
Late 80.7 78.4 80.7 81.5 79.3 81.4

and the dictionary size is set to 1,024. The experiments is per-
formed with both linear and histogram intersection kernel (HIK)
support vector machine (SVM). HIK is a kernel designed specif-
ically for histograms features (e.g., bag-of-frames) [34]; we use
the implementation from Maji et al. [34]. For linear SVM, we use
two different implementations, LIBSVM and LIBLINEAR [35, 36].
LIBSVM uses a more general way to solve the SVM optimization
problem, which works for both linear and non-linear kernels. In con-
trast, LIBLINEAR utilizes a more efficient solver design specifically
for linear kernel. Therefore, LIBLINEAR is a more efficient linear
SVM implementation comparing to LIBSVM. For LIBLINEAR,
we use two different settings; one solves the primal formulation
(Primal), and the other solves the dual formulation (Dual.) Al-
though the two formulations are mathematically equivalent [36], we
found the dual form is more efficient for our problem, as Table 1
shows. Overall, using power normalization yields an improvement
in both average accuracy and speed, and the best result for the power
normalized SLBoF is 82.2%, which outperforms conventional VQ
and is on par with the state-of-the-art results for GTZAN genre
classification [7, 37].

For HIK SVM, power normalization improves the classification
accuracy, but the increment is subtle (1.1%). In contrast, for linear
SVM, the effect of power normalization is more relevant (6.43%).
Power normalization improves the discriminant power of BoF more
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Fig. 2. Classification accuracy as we vary the second-layer dictio-
nary size for different bag-of-frames models with linear kernel or
histogram intersection kernel.

in the linear space than in the non-linear space. Although LIBSVM +
HIK leads to better results, it requires roughly 17 times more process
time than LIBLINEAR (Dual). LIBLINEAR considerably boosts
the speed of training and testing process.

Although LIBLINEAR with dual formulation has better perfor-
mance comparing to primal formulation, the decision about which
formulation to use depends on the size of dictionary (dimension of
the feature vector) and number of training instances. According to
Fan et al. [36], primal is more efficient than dual when # of instances
� feature dimension, and vice versa when # of instances 	 feature
dimension. As a result, with power normalized BoF, LIBLINEAR
(Primal) is a more viable solution in a large scale setting.

4.2. Dual-layer Model, Segmentation & Transductive vs. Induc-
tive Learning

Next, we evaluate the performance of the proposed DLBoF model
under 2× 2× 3 = 12 different setups on GTZAN genre classifica-
tion. These setups are designed form varying dictionary training set,
classifier, and segmentation method. The two dictionary training sets
we used in this experiment are GTZAN (GTZ) and USPOP (USP).
USPOP is a data set consisting of 8,764 tracks from 400 manually
selected popular artists [38]. While the use of GTZAN for dictio-
nary learning adopts the “transductive learning” scenario (assuming
that the test set of the target task is available during feature learning),
the use of USPOP increases the inductive power of the experiment
results. The two classifiers we used are HIK SVM and linear SVM,
and the three segmentation methods considered are fixed segments of
2.5 seconds with 50% hop (2.5s), fixed segments of 5 seconds with
50% hop (5s), and variable-length segmentation using MIRsegment
(MIR) [31]. The size of the dictionaries is set to 1,024. The four BoF
related models we tested include the BoF constructed by first-layer
sparse coding (First-layer BoF), BoF constructed by second-layer
sparse coding (Second-layer BoF), the proposed DLBoF (Dual), and
the late fusion alternative (Late) that builds two independent classi-
fiers for the first and second-layer BoF and makes prediction based
on the average estimated probability of the two classifiers.

Table 2 shows that using the two-layer structure improves the
performance in most cases. When the dictionary is learned from
GTZAN and the music is segmented using MIRsegment, the clas-
sification accuracy reaches 85.7%. The performance difference is
significant (p-value < 0.05) under the two-tailed t-test. We also see
that using a fixed-length window (e.g., 2.5 sec) is also competitive
(85.2% for Dual). Using second-layer BoF alone does not lead to

performance improvement, possibly because frame-level informa-
tion is more important for genre classification. Moreover, we see
that using USPOP for learning the dictionary leads to higher accu-
racy for the single-layer (First) setting but lower for the dual-layer
setting, suggesting that for such a deep structure it may be prefer-
able to adopt a transductive learning setting, as usually done in the
literature (e.g., [12, 23]).

As for large-scale processing, linear kernel is usually preferable.
Interestingly, we note that the performance difference between linear
SVM and HIK SVM is smaller when USPOP is used for dictionary
training. This suggests that, when the dictionary training set and
the classifier training set are independent and the target data set is
large, cooperating DLBoF with linear SVM is an attractive setup.
In addition, although MIRsegment always performs the best among
the three tested segmentation methods, it is computational more de-
manding comparing to fixed segmentation. To deal with a large-scale
data set, using fix segmentation is a sound option.

4.3. Dictionary Size & Fusion

According to Yeh et al., setting the first-layer dictionary size to 1,024
leads to near-optimal result [7]. However, whether 1,024 is optimal
for second-layer dictionary deserves investigation. To this end, we
perform another experiment that fixes the size of the first-layer dic-
tionary to 1,024 but varies the size of the second-layer dictionary.
For this evaluation, the dictionaries are trained from GTZAN, and
the segmentation is done by MIRsegment. The result is shown in
Fig. 2. Overall, the accuracy of fusion increases as the second-layer
dictionary size grows.

For linear SVM, the increment of DLBoF’s performance satu-
rates about 2,048, and there seems to be no clear relationship be-
tween DLBoF and second-layer BoF. In addition, second-layer BoF
is always worse than the other features. For HIK, the performance
seems to continue improving slightly even when the dictionary size
reaches 4,096. Nevertheless, in view of computational complexity,
it seems feasible to set the dictionary size simply to 1,024.

Finally, we note that, while late fusion weights both layers
equally, the proposed DLBoF adopts an early fusion scheme and
does not assume equal weight between the two layers. It turns out
that early fusion consistently outperforms its late fusion counterpart
in our evaluation, showing that it is better not to assign equal weights
to the two layers.

5. CONCLUSIONS

In this paper, we have proposed the DLBoF model, which im-
proves conventional BoF model by considering both frame-level
music characteristics and segment-level music semantics. We have
shown that the proposed DLBoF is effective and efficient, and it ob-
tains 86.7% accuracy for music genre classification on the GTZAN
data set. The result is highly competitive in comparison to the
state-of-the-art. We have also shown the effectiveness of power
normalization, and the advantages gained from using linear SVM
instead of non-linear SVM. The two-layer structure can be easily
implemented by cascading two layers of dictionary learning and is
readily applicable to other MIR or audio classification problems.
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