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ABSTRACT
Tempo estimation is a fundamental problem in music information
retrieval. It also forms the basis of other types of rhythmic analysis
such as beat tracking and pattern detection. There is a large body
of work in tempo estimation using a variety of different approaches
that differ in their accuracy as well as their complexity. Fundamen-
tally they take advantage of two properties of musical rhythm: 1) the
music signal tends to be self-similar at periodicities related to the
underlying rhythmic structure, 2) rhythmic events tend to be spaced
regularly in time. We propose an algorithm for tempo estimation that
is based on these two properties. We have tried to reduce the number
of steps, parameters and modeling assumptions while retaining good
performance and causality. The proposed approach outperforms a
large number of existing tempo estimation methods and has similar
performance to the best-performing ones. We believe that we have
conducted the most comprehensive evaluation to date of tempo in-
duction algorithms in terms of number of datasets and tracks.

Index Terms— music information retrieval, tempo induction,
rhythm analysis, audio signal processing

1. INTRODUCTION

The automatic analysis of rhythm from audio signals is part of
a number of music information retrieval (MIR) applications such
as music similarity and recommendation, semi-automatic audio
editing, automatic accompaniment, polyphonic transcription, beat-
synchronous audio effects and computer assisted DJ systems. The
two main tasks related to automatic analysis of rhythm that have
been explored are tempo induction/estimation and beat tracking.
The goal of tempo estimation is to automatically estimate the rate
of musical beats in time. Beats can be defined as the locations in
time where a human would “tap” their foot while listening to a piece
of music. Beat tracking is the task of determining the locations of
these beats in time, and is considerably harder in music in which the
tempo varies over time [1].

In this paper, we focus solely on the task of tempo induction.
Algorithms for tempo induction have become, over time, increas-
ingly more complicated. They frequently contain multiple stages,
each with many parameters which need to be adjusted. This com-
plexity makes them less efficient, harder to optimize due to the large
number of parameters, and difficult to replicate. Our goal has been
to simplify the process by reducing the number of steps and param-
eters without affecting the accuracy of the algorithm. An additional
motivation is that tempo induction is a task that most human listeners
(even without musical training) can do reasonably well. Therefore,
it should be possible to model this task without requiring complex
models of musical knowledge.

After an early period in which systems were evaluated individ-
ually on small private datasets, since 2004 there have been three
public datasets that have been frequently used to compare different
approaches. We have conducted a thorough experimental investiga-
tion of multiple tempo induction algorithms which uses two datasets
in addition to the usual three. We show that our proposed method
demonstrates state-of-the-art performance that is statistically very
close to the best performing systems we evaluated. The code of our
algorithm, as well as the scripts used for the experimental compar-
ison of all the different systems that were considered, is available
as open source software. Moreover, all the datasets used are pub-
licly available. By supporting reproducible digital signal processing
research we hope to stimulate further experimentation in tempo esti-
mation and automatic rhythmic analysis in general.

The origins of work in tempo estimation and beat tracking can
be traced to research in music psychology. There are some indica-
tions that humans solve these two problems separately. In the early
(1973) two-level timing model proposed by Wing and Kristoffer-
son [2], separate mechanisms for estimating the period (tempo) and
phase (beat locations) are proposed by examining data from tapping
a Morse key. A recent overview article of the tapping literature [3]
summarizes the evidence for a two-process model that consists of a
slow process which measures the underlying tempo and a fast syn-
chronization process which measures the phase.

Work in beat tracking started in the 1980s but mostly utilized
symbolic input, frequently in the form of MIDI (Musical Instrument
Digital Interface) signals. In the 1990s the first papers investigating
beat tracking of audio signals appeared. A real-time beat tracking
system based on a multiple agent architecture was proposed in 1994
[4]. Another influential early paper described a method that utilized
comb filters to extract beats from polyphonic music [5].

There has been an increasing amount of interest in tempo induc-
tion for audio signals in recent years. A large experimental compari-
son of various tempo induction algorithms was conducted in 2004 as
part of the International Conference on Music Information Retrieval
(ISMIR) and presented in [6]. A more recent experimental compari-
son of 23 algorithms was performed in 2011, giving a more in-depth
statistical comparison between the methods [7]. The original 2004
study established the evaluation methodology and data sets that have
been used in the majority of subsequent work, including ours. There
has been a growing concern that algorithms might be over-fitting
these data sets created in 2004. In our work we have expanded both
the number of datasets and music tracks in order to make the eval-
uation results more reliable. Although there is considerable variety
in the details of different algorithms there are some common stages
such as onset detection and periodicity analysis that are shared by
most of them; more details are available in [8].
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Finally, we highlight some specific examples of previous work
that have been influential in the design of the proposed tempo in-
duction method. Our work is similar in spirit to the computationally
efficient multipitch estimation model proposed in [9]. In that paper,
the authors showed how previous, more complicated, algorithms for
multiple pitch detection could be simplified, improving both speed of
computation and complexity without affecting accuracy. The idea of
a cumulative beat histogram based on self similarity was originally
proposed for characterizing rhythm for genre classification [10] as
well as beat strength [11]. Another influential idea was the use of
cross-correlation of “ideal” pulse sequences corresponding to a par-
ticular tempo and downbeat location with the onset strength signal.
This approach was used for efficient tempo and beat tracking in au-
dio recordings [12]. One of the issues facing tempo induction is
that algorithms frequently make octave errors, i.e. they estimate the
tempo to be either half or twice (a third or thrice) the actual ground
truth tempo [13, 14]. It is frequently the case that this ambiguity also
exists with human tapping; selecting the right tempo between two
integer-related candidates is challenging. Recently machine learning
techniques for estimating tempo classes (“slow”, “medium”, “fast”)
[15] have been proposed and used for reducing octave errors for ex-
ample by using the estimated class to create a prior to constrain the
tempo estimation [16]. Our goal was to take these concepts, simplify
each step, and combine them in an easily-reproducible algorithm.

2. ALGORITHM

The proposed approach (shown in Figure 1) follows a relatively com-
mon architecture with the explicit design goal to simplify each step
as much as possible without losing accuracy. For example, unlike
many existing tempo estimation and beat tracking algorithms we do
not utilize multiple frequency bands, perform peak picking during
the onset strength signal calculation, employ dynamic programming,
utilize complex probabilistic modeling based on musical structure,
and our use of machine learning is simple and limited. The follow-
ing sections describe each step.

We provide two open-source implementations of the proposed
algorithm. The first is in C++ and is part of the Marsyas audio
processing framework [17]. The second is in Python and is a less
efficient stand-alone reference implementation. We created two im-
plementations to test the reproducibility of the description of the al-
gorithm, as this is an increasingly important facet of research [18].
Both versions are available in the Marsyas SVN1 source repository,
with the final version being revision 4953. All evaluation scripts and
ground truth data are also included in the svn repository. Interested
readers can contact the authors for details.

2.1. Onset Strength Signal

The first step is to compute a time-domain onset strength signal
(OSS) from the audio input signal. The OSS is at a lower sam-
pling rate and should have high values at the locations where there
are rhythmically salient events that are termed “onsets”. Beats tend
to be located near onsets and can be viewed as a semi-regular sub-
set of the onsets. A large number of onset detection functions have
been proposed in the literature [19, 20]. In most cases, they mea-
sure some form of change in either energy or spectral content. In
some cases, multiple onset detection functions are computed and are
either treated separately for periodicity detection or combined to a
single OSS. After experimentation with several choices we settled

1 http://sourceforge.net/p/marsyas/code/
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Fig. 1: Dataflow diagram of the tempo induction algorithm

on a simple onset detection function that worked better than the al-
ternatives and can be applied directly to the log-magnitude spectrum.
More specifically, we sum the log-magnitudes of the frequency bins
[8, 21] that have a positive change in log-magnitude over time:

OSSpre(n) =

N−1∑
f=0

(LP (f, n)− LP (f, n− 1)) · IPF (f, n)

LP (f, n) = ln (1 + 1000.0 · |X(f, n)|)

IPF (f, n) =

{
0 if |X(f, n)| − |X(f, n− 1)| ≤ 0

1 otherwise

(1)

where |X(f)| is the magnitude spectrum of the Fourier transform at
frame n and frequency bin f , and IPF (f, n) is an indicator function
selecting the frequency bins in which there is a positive change in
log-magnitude. A Hamming window is applied before computing
the Fourier transform. For the computation of the log-magnitude
spectrum a window size of 256 samples at 44100 Hz sampling rate
with a hop size of 128 samples is used. OSSpre is further low-pass
filtered with a 7th-order FIR filter with a cutoff of 30 Hz, using the
Hamming window design method to create the final OSS.

2.2. Periodicity Detection

The filtering and the subsequent periodicity estimation is performed
on sequences of 2048 samples of the OSS corresponding to segments
of approximately 6 seconds of the original audio, also used in [21].
The hop size of the onset strength signal is 128 OSS samples corre-
sponding to approximately 0.37 seconds. Each analysis frame of the
OSS is denoted by m, with a total of M frames.

Autocorrelation is applied to the onset strength signal to deter-
mine the different time lags in which the OSS is self similar. The lag
(x-axis) of the peaks in the autocorrelation function will correspond
to the dominant periodicities of the signal which in many cases will
be harmonically related (integer multiples or ratios) to the actual un-
derlying tempo. We utilize the “generalized autocorrelation” func-
tion [9] whose computation consists of zeropadding to double the
length, computing the discrete Fourier transform of the signal, mag-
nitude compression of the spectrum, followed by an inverse discrete
Fourier transform:

Am(t) = DFT−1(|DFT (OSS(m))|k) (2)

The parameter k controls the frequency domain compression. Nor-
mal autocorrelation has a value of k equal to 2 but it can be advan-
tageous to use a smaller value [9]. The peaks of the autocorrelation
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function tend to get narrower with smaller values of k resulting in
better lag resolution. At the same time for low values of k the per-
formance deteriorates as there is more noise sensitivity. We have
empirically found k = 0.5 to be a good compromise between lag-
domain resolution and sensitivity to noise.The generalized autocor-
relation of the signal is subsequently warped and accumulated into
a beat histogram (or periodicity vector). Unlike some of the previ-
ous autocorrelation-based approaches [10] in which peak picking is
applied in the autocorrelation domain, we map all the values of the
autocorrelation function to the Beat Histogram. More specifically
each value of the generalized autocorrelation function is mapped to
a corresponding BPM (beats-per-minute) value based on the lag t.

b = 60.0
t
· Sr (3)

where t is the time lag (in samples), Sr is the signal rate of the OSS,
and b is subsequently quantized to an integer value b̂ in fractions of
a beat (we use 0.25 BPM).

It is possible that multiple lags t map to the same quantized b̂
value. The periodicity vector for the current OSS frame m is there-
fore created by averaging all the generalized autocorrelation values
that map to quantized periodicity b̂ expressed in quarter BPM.

Hm(b̂) = 1
|S

b̂
|
∑
l∈S

b̂
Am(t) (4)

where Am(t) is the generalized autocorrelation value of the onset
strength signal at lag t in frame m, and Sb̂ is the set of time lags t
that map to quantized periodicity b̂. Some of the values of the peri-
odicity vector do not have any lag mapped to them. Their values are
linearly interpolated from their neighbors. The beat histogram BH
accumulates these periodicity vectors (between 50 and 200 BPM)
over time:

BHm(b̂) =

M∑
m=1

Hm(b̂) (5)

The BH will contain peaks at integer multiples of the underly-
ing tempo as well as other dominant periodicities related to rhythmic
subdivisions. To boost harmonically related peaks a time stretched
version of the BH by a factor of 0.5 is added to the original resulting
in an enhanced BH (EBH):

EBHm(b̂) = BHm(b̂) +BHm(0.5 · b̂) (6)

The peaks of the cumulative EBH typically correspond to the
main rhythmic periodicities present in the signal. The BPM values
corresponding to the top 8 peaks (a value is considered a peak if it
is larger than the values of a neighborhood of ±1.5 BPM around it)
in the EBH of OSS frame m between 50 and 180 BPM are used as
the tempo candidates examined in the following step of periodicity
detection using pulse regularity.

2.3. Periodicity Detection using pulse regularity

Once the candidate tempos from the EBH have been identified for
a 6-second frame of the OSS, they are evaluated by correlating the
OSS signal with an ideal expected pulse train that is shifted in time
by different amounts. As shown by Laroche [12] this corresponds to
a least-square approach of scoring candidate tempos and downbeat
locations assuming a constant tempo during the analyzed 6 seconds.
The cross-correlation with an impulse train can be efficiently per-
formed by only multiplying the non-zero values, significantly reduc-
ing the cost of computation.

Given a candidate tempo period in samples P and a candidate
phase location φ (the time instance a beat occurs) associated with
OSS frame m, we create a sequence of 4 pulses as follows:

IP,φ = φ+ kP k = 0, . . . , 3 (7)

In addition a series of secondary pulses with weight 0.5 are
added to the ideal impulse train spaced by both 2P and 1.5P . These
capture the common integer relations based on meter. When scoring
a particular tempo candidate the resulting impulse signal is cross-
correlated with the OSS for all possible phases φ. If we denote
ρc(φ,m) as the vector of cross-correlation values for all phases φ
and candidate tempo c in window m, we can then score each tempo
candidate with highest cross correlation value over all possible φ:

SCv(c,m) = var
φ
(ρc(φ,m))

SCx(c,m) = max
φ

(ρc(φ,m))
(8)

These two score vectors are normalized so that they sum to 1 and
added to yield the final scores for each tempo candidate.

SC(c,m) =
SCx(c,m)∑
c SCx(c,m)

+
SCv(c,m)∑
c SCv(c,m)

(9)

The SC(c,m) vector is also normalized such that its sum is
1. The highest score tempo candidate is selected for frame m and
accumulated in a pulse regularity beat histogram PBH , which is
initialized as 0. We define the argmax of SC(c,m) as ca(m).

PBH(ca(m),m) = PBH(ca(m),m− 1) + SC(c,m) (10)

2.4. Doubling heuristic

Finally we consider three possible candidate tempos based on the
cumulative EBH and PBH at the end of the audio file. The first
candidate is the tempo corresponding to the highest peak of the en-
hanced self-similarity beat histogram, TEBH . The other two can-
didates correspond to the two highest peaks of the pulse regularity
beat histogram, T 1

PBH and T 2
PHB . It was empirically observed that

the tempo corresponding to the highest peak of the PBH tends to be
the best estimate. However there are cases when one of the other
candidates is a better choice and also frequently a pair of candidates
has an integer ratio of 2 (with a tolerance parameter of ±4% BPM).
The presence of such a pair is a strong indicator that one of them is
the correct tempo but the question remains which one to pick. We
use a simple tempo threshold to decide which of the doubling pair is
the final predicted tempo. If we denote the lowest candidate of the
doubling pair TL (it can be any of the three tempo candidates), and
TH the higher tempo candidate the heuristic is:

Tfinal =


argmaxT PBH no doubling pair
2 ∗ TL TL <= 68

TL TL > 68

(11)

The doubling threshold of 68 BPM was determined using very
simple machine learning (a decision tree) and an oracle approach
based on the ground truth data. The “feature” was the lowest tempo
candidate of the pair and the desired outcome was whether to double
or not. This can be viewed as an extremely simplified version of the
more complex machine learning approaches that have been proposed
in the literature [16, 22, 15].
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files marsyas gkiokas zplane klapuri echonest ibt qm vamp scheirer
ACM MIRUM 1410 65.2 66.0 64.5 62.6 67.6 57.9- 58.8- 49.5-
ISMIR04 SONG 465 58.5 56.8 56.1 57.8 57.0 46.7- 42.8- 42.6-
BALLROOM 698 61.3 60.0 64.2 62.3 55.2 62.0 64.0 52.6-
HAINSWORTH 222 66.7 64.4 69.8 71.6 66.7 72.5 72.5 49.1-
GTZAN GENRES 1000 73.6 70.3 67.6- 68.7 66.7- 59.8- 57.1- 55.6-
Dataset average 759 65.1 63.5 64.5 64.6 62.6 59.8 59.1 49.9
Total average 3795 66.0 64.8 64.6 64.1 63.7 58.6- 58.2- 50.8-

(a) Accuracy 1 results
files marsyas gkiokas zplane klapuri echonest ibt qm vamp scheirer

ACM MIRUM 1410 87.9 89.6 86.5 88.5 85.2 86.0 85.3 71.4-
ISMIR04 SONG 465 83.4 90.8 82.4 89.2 78.5 76.6 77.6 64.3-
BALLROOM 698 89.3 94.4 92.1 90.1 84.1 87.8 86.0 73.6-
HAINSWORTH 222 82.0 84.7 82.4 84.2 85.6 82.0 83.8 65.3-
GTZAN GENRES 1000 90.1 92.0 87.7 90.9 85.7 86.1 84.9 75.6-
Dataset average 759 86.5 90.3 86.2 88.6 83.8 83.7 83.5 70.1
Total average 3795 87.8 91.0+ 87.1 89.3 84.3- 85.0 84.3- 71.7-

(b) Accuracy 2 results.

Table 1: Tempo accuracy, results given in %. The + and - indicate that the difference between this algorithm and Marsyas is statistically
significant. Bold numbers indicate the best-performing algorithm for this dataset. The “Dataset average” row is the mean of the algorithm’s
accuracy between all datasets, while the “Total average” is the accuracy over all datasets summed together.

3. EVALUATION

The proposed algorithm (marsyas) was tested against 7 other
tempo induction algorithms on 5 datasets of 44100 Hz, 16-bit audio
files. As with other tempo evaluations, two accuracy measures are
used: Accuracy 1 is the percent of estimates which are within 4%
BPM of the ground-truth tempo, and Accuracy 2 is the percent of
estimates which are within 4% of a multiple of 1

3
, 1
2
, 1, 2, or 3 times

the ground-truth tempo. Following the measure of statistical sig-
nificance used in [23, 7], we tested the accuracy of each algorithm
against our accuracy with McNemar’s test using a significance value
of p < 0.01. Table 1 lists some representative results comparing
the proposed method with both commercial and academic tempo
estimation methods. For algorithms that had variants such as ibt,
we selected the best performing variant. As can be seen marsyas
has the best Accuracy 1 although the difference with the other top
performing algorithms is not statistically significant.

We briefly describe the algorithms and datasets. gkiokas [24]
has the best Accuracy 2 performance. It is significantly more com-
plicated than our proposed approach as it uses a constant-Q trans-
form, harmonic/percussive separation algorithm, modeling of met-
rical relations, and dynamic programming. zplane is a commer-
cial beat-tracking algorithm 2 used in a variety of products such as
Ableton Live and was designed for whole songs rather than snip-
pets. klapuri [25] uses a bank of comb filters and simultane-
ously estimates three facets of the audio: the atomic tatum pulses,
the tactus tempo, and the musical measures using a probabilistic for-
mulation. It is also more complicated than our proposed method.
echonest is the development build of version 3.2 of the Echo
Nest track analyzer3. The algorithm is based on a trained model
and is optimized for speed and generalization. ibt [26, 27] uses
multiple agents which create hypotheses about tempo and beats that
are continuously evaluated using a continuous onset detection func-
tion. qm-vamp [28] is implemented as part of the Vamp audio plu-
gins4 which outputs a series of varying tempos. To compare this set

2[aufTAKT] V3, http://www.beat-tracking.com
3 http://developer.echonest.com/
4http://vamp-plugins.org/

to the single fixed ground-truth tempo, we calculated the weighted
mean of those varying tempos, where each BPM is weighted by the
length for which that tempo is held. scheirer [5] was created
in 1996 and uses a bank of parallel comb filters for tempo estima-
tion. It was selected as a baseline to observe how tempo induction
has improved over time. ACM MIRUM was originally gathered with
crowd-sourced annotations [29], but was further processed by [22] to
remove songs for which the tempo annotations differed significantly.
ISMIR04 SONG and BALLROOM arose from the 2004 competi-
tion conducted in [6]. HAINSWORTH came from [30]. Tempo
annotations were recently added to the GENRES dataset [10] (10
genres, 100 tracks per genre) and is available in the Marsyas SVN
repository in the file collections/genres tempos.mf

4. CONCLUSIONS

We have presented a simple, effective algorithm for tempo estima-
tion from audio signals. It exploits self-similarity and pulse regular-
ity using ideas from previous work that have been reduced to their
bare essentials. Each step is relatively simple and there are only a
few parameters to adjust. A thorough experimental evaluation with
the largest number of data sets and music track to date, shows that
our proposed method has excellent performance that is statistically
indistinguishable from the top performing algorithms including two
commercial systems. We hope that providing a detailed description
of the steps, open source implementations, and the scripts used for
the evaluation experiments will assist reproducibility and stimulate
more research in rhythmic analysis. In the future we plan to use
the proposed tempo estimation method as part of beat tracking and
rhythmic pattern detection algorithms.
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