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ABSTRACT

We propose a novel and fast approach to discover structure
in western popular music by using a specific type of matrix
factorization that adds a convex constrain to obtain a decom-
position that can be interpreted as a set of weighted cluster
centroids. We show that these centroids capture the differ-
ent sections of a musical piece (e.g. verse, chorus) in a more
consistent and efficient way than classic non-negative matrix
factorization. This technique is capable of identifying the
boundaries of the sections and then grouping them into dif-
ferent clusters. Additionally, we evaluate this method on two
different datasets and show that it is competitive compared
to other music segmentation techniques, outperforming other
matrix factorization methods.

Index Terms— matrix factorization, music structure
analysis, segmentation

1. INTRODUCTION

Identifying music structure in an automated fashion is a com-
mon task in systems that manage any type of music informa-
tion, especially those containing large collections of songs.
The automatic identification of structure in music is a topic
that has been widely investigated in the music informatics re-
search community [1]. The main goal is to segment a piece in
its different sections (e.g. verse, chorus), a task that is often
divided into two different subproblems: (i) the finding of the
boundaries that separate the sections and (ii) the clustering (or
labeling) of these sections into different groups based on their
similarities.

The classic approach to identify boundaries is to apply a
“checkerboard” kernel over the diagonal of a Self Similarity
Matrix (SSM) of certain —commonly beat-synchronous—
features, thus obtaining a novelty curve from which to ex-
tract the boundaries by extracting its more prominent peaks
[2, 3, 4]. The size of this kernel defines the amount of pre-
vious and future features being taken into account. Other ap-
proaches include the usage of supervised learning [5] or vari-
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ants of SSM also known as lag matrices [6]. As for the group-
ing subtask, it can be viewed as an audio similarity prob-
lem. Different methods have been proposed: using Gaus-
sian Mixture Models (GMM) [7], a variant of Nearest Neigh-
bor Search (NNS) [8], and Non-negative Matrix Factoriza-
tion (NMF) [9]. Finally, other methods combine both tasks
into one sole algorithm, e.g. using Hidden Markov Models
(HMM) [10, 11], a probabilistic version of convolutive NMF
[12], or k-means clustering [13].

Our approach is based on the NMF method proposed in
[9], which we extend by adding a convex constrain [14] that
results in weighted cluster centroids that represent the differ-
ent sections of a musical piece in a more effective manner.
Moreover, we show that it is possible to efficiently extract
music boundaries by clustering the decomposition matrices,
which take into account the repeated parts across the song in-
stead of just detecting sudden local changes. Therefore, the
proposed algorithm aims to address the two main subtasks of
music segmentation —i.e. finding boundaries and clustering
sections.

2. FEATURE EXTRACTION
2.1. Beat-Synchronous Chromagram

In this work we make use of the chroma features described in
[15] that are provided by the Echo Nest API'.

A chroma feature is characterized by a 12-dimensional
vector that represents the amount of energy that can be found
in each of the 12 different pitches that commonly exist in the
western popular music folded into one single octave. This is
achieved by applying a constant-Q transform across the entire
spectrogram and then folding it into one octave comprising
the 12 quantized pitches. When these features are stack to-
gether following the song structure in a N x 12 matrix, we
generate a so-called chromagram, where N is the number of
time frames in which the musical piece has been divided.

Moreover, we resample onset-based asynchronous chroma
features (as found through The Echo Nest rrack API) to beats,
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Fig. 1. Example of a chromagram (top-left), a pre-filtered chroma-
gram with h = 9 (top-right), an original SSM using the correlation
distance (bottom-left), and an enhanced SSM (bottom-right), of the
song Help! by The Beatles.

thus reducing greatly the number of frames across the musical
piece, and leading to beat-synchronous chromagrams.

2.2. Pre-Filtering and SSM Enhancement

A series of transformations are applied to the chromagram in
order to better distinguish the different parts of a song (as it is
common in this type of problem [1]). First, a sliding median
filter of size h is run against each of the beat-synchronous
chromagram channels. The median filter gives sharper edges
than a regular mean filter, which is useful in obtaining sec-
tion boundary precision. By filtering features across time, we
retain the most prominent chromas within the h-size window
and remove smaller artifacts, which are irrelevant in our con-
text. In Figure 1 we show the example of a non-filtered and
its corresponding pre-filtered chromagram.

We then compute the SSM of the pre-filtered beat-
synchronous chromagram. The SSM gives us pair-wise com-
parisons of a given set of features using a specific distance
measure and stores the results in an N x [N symmetric matrix
D, such that D(i, j) holds the distance between the features
of the beat indices ¢ and j. In this case D(i,j) = D(j,4%)
and D(i,7) = 0. It is essentially a specific instance of the
more generic recurrence plots [16], but using distances (or
similarities) instead of binary values. In our experiments we
found that the Correlation distance gave better results than
other distances, including the Euclidean, Cosine or Manhat-
tan distance. The correlation distance is defined as follows:

(X =) (Y —py)
[ = pxll2lly — pyll2
where || - || stands for the Euclidean distance, pix denotes

the mean of the feature vector x, and - represents the dot prod-

uct.
Finally, we enhance the SSM by using a power-law ex-
pansion (using the power 2 empirically gave us the best re-

d(x,y) (1)

237

sults), such that close similarities will be closer and distant
similarities will be more distant. This improves the contrast
of the SSM and results in clearer matrix factorizations. After
the exponentiation, the final step consists of normalizing the
entire matrix between O (very dissimilar) and 1 (equal). We
illustrate this enhancement in Figure 1.

3. CONVEX NMF IN MUSIC SEGMENTATION
3.1. Convex NMF Description

The factorization of an input feature matrix X € RY*P com-
posed of X = (x3,...,xn), which has N row observations
x; of p features, can be described as X =~ F'G, where F' €
RNXT can be interpreted as a cluster row matrix, G € R"*P
is composed of the indicators of these clusters, and 7 is the
rank of decomposition. In NMF, both F' and G are enforced
to be positive (i.e. X must be positive too). We denote by z a
row vector and by z” a column one.

C-NMF adds a constrain to F' = (f{',... ") such that
its columns ij become convex combinations of the features
of X:

T:

f]

X{wij+ ... +x wy; = Xw] jell:r] (2

For a linear combination to be convex, all coefficients w;
must be positive and the sum of each set of coefficients ij
must be 1. Formally: w;; > 0,3, wi; = 1.

This results in ' = XW, where W € RP*", which
makes the rows f; interpretable as weighted cluster centroids,
representing, in our case, better sections of the musical piece
as we will see in subsection 3.3 when computing the decom-
position matrices. The decomposition matrices 7; are ob-
tained as follows: R; = f]T g;, where j € [1 : r]. Finally,
C-NMF can be formally characterized as: X ~ XWG.

For a more detailed description of C-NMF with an algo-
rithm explanation and sparsity discussion we refer the reader
to [14]. A good review of algorithms for NMF can be found
in [17]. Lastly, a good example of C-NMF in computer vision

can be found in [18].

3.2. C-NMF vs NMF

As opposed to NMF, in C-NMF the matrix [’ is a set of convex
combinations of the rows of the input matrix X (see equation
2). Since, in our case, X is a SSM, we have, for each row
X;, the similarity of the time frame 7 with the rest of the time
frames. Thus, each row f; stores information about the time
frame 7 across the entire song too. That is why, as Figure
2 shows, the boundaries become much clearer in the decom-
position matrices when interpreted as matrices of row-vector
features.

Another important benefit for our application of music
segmentation is that the matrices W and G are naturally
sparse when adding this convex constrain, as opposed to
traditional NMF (where G is not necessarily sparse). This
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Fig. 2. Decomposition matrices of C-NMF (top) and NMF (bottom)
with a rank of decomposition of » = 2 from the song Tell Me Why
by The Beatles.
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Fig. 3. Logarithmic histogram of distances between 100 sets of de-
composition matrices obtained with C-NMF (blue) and NMF (green)
from the song Help! by The Beatles.

results in C-NMF being more likely to find similar decom-
position matrices for the same input than NMF, which is
more sensitive to its initialization. To illustrate this we ex-
ecute both C-NMF and NMF T' = 100 times for the same
song with r 2. We compute the pair-wise difference
C(M?*, M7) between their resulting sets of decomposition
matrices M" {RY,..., R} (where n is the execution
index, n € [1 : TY]). This is formally illustrated in Equation 3.

C(M', MY =3 |My," — My 2|le i,5 €[1:T]
3
In Figure 3 we plot the logarithmic histogram of these dif-
ferences for each method, so that the shorter the difference,
the more consistent the technique will be. As can be seen,
C-NMF’s greatest difference is smaller than 5, and NMF’s
greatest difference is almost 45, therefore C-NMF is more
consistent than NMF.

T
m=1 |

3.3. Applying C-NMF in Music Segmentation

In this subsection we describe how C-NMF can be useful in
the task of music structure analysis. We divide this part into
the two main problems of music segmentation: boundaries
and clustering.
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3.3.1. Finding Boundaries

We run k-means clustering with & = 2 to each one of the
C-NMF decomposition matrices, interpreting them as row-
vector features. We efficiently obtain the section boundaries
that best divide each section of the matrices by not only look-
ing at local similarities but also the global song structure due
to the properties of the SSM. The choice of k = 2 allows us to
detect boundaries (i.e. there’s a boundary or not), regardless
of how the various sections cluster.

One computational advantage of applying k-means clus-
tering to an NMF (either convex or not) decomposition matrix
is that, when whitening the data (i.e. making it unit variance),
due to the fact that we use a SSM as an input and the sim-
ilarities between NMF and k-means clustering [19], we ob-
tain a one-dimensional feature array of observations (i.e. all
rows become equal), which makes the computational process
cheaper. Once we have boundaries for each matrix, we com-
bine them within a distance window of size w so that bound-
aries close to each other get merged in their average location.

3.3.2. Clustering Sections

The main idea is to use the diagonals of the C-NMF decom-
position matrices to form a new feature space from which to
cluster the different sections, as described in [9], using the
previously found boundaries. In this work we make use of
the Euclidean distance for clustering, and put the exploration
of different distance measures like the Bayesian Information
Criterion (BIC) or the Mahalanobis aside for future work. The
main drawback of this method is to decide on the number of
sections K, which is used to cluster the new feature space
and it is a highly sensitive parameter to the musical style of
the dataset.

4. EVALUATION

We evaluate our algorithm with the annotated Beatles dataset?
corrected by the Tampere University of Technology (TUT
Beatles)?. That dataset is composed of 176 songs and is tradi-
tionally used to evaluate such segmentation task [10, 4, 9, 12].
We also evaluate against the Internet Archive part of the more
recent SALAMI dataset [20], which contains 253 freely avail-
able songs.

We used the following parameters in our evaluation: A =
9 beats for the size of the median-filter window, w = 8 beats
for the size of the window that merges boundaries, = 2 for
the number of decomposition matrices, and K = 4 for the
number of section types per song. We leave an exhaustive
exploration of the parameters for future work due to the lim-
itation of space, while still showing that we can obtain good
results with this set of arguments.

Zhttp://www.icce.rug.nl/~soundscapes/DATABASES/AWP/awp-
notes_on.shtml
3http://www.cs.tut.fi/sgn/arg/paulus/structure.html



TUT Beatles Dataset ‘

Clustering Boundaries
Method F P R So Su F P R
C-NMF 59.3 | 489 | 832 | 49.8 | 47.8 573 | 549 | 64.6
NMF 56.6 | 48.8 | 77.7 | 43.7 | 49.6 589 | 547 | 67.7
SI-PLCA 55.8 | 463 | 80.7 | 41.0 | 50.6 232 | 509 | 172
Kaiser[9] 60.8 | 61.5 | 64.6 - - 50.0 | 46.5 | 522

‘ SALAMI (Internet Archive) Dataset ‘

Clustering Boundaries
Method F P R So Su F P R
C-NMF 53.1 | 44.0 | 81.0 | 50.6 | 443 45.1 | 43.0 | 523
NMF 515 | 428 | 77.6 | 379 | 45.6 48.8 | 44.0 | 62.7
SI-PLCA 51.3 55.8 52.1 44.2 51.4 24.8 | 45.1 18.4

Table 1. Results for three different algorithms (C-NMF, NMF, and
SI-PLCA) applied to two different datasets: TUT Beatles (top) and
the Internet Archive subset of SALAMI (bottom). The table shows
the results for clustering (left) and boundaries (right).

The results of the algorithm are compared against two
other techniques that use matrix factorization for music seg-
mentation: SI-PLCA [12] and a variant of our algorithm that
uses classic NMF instead of C-NMF. The parameters used
for SI-PLCA are the ones proposed for MIREX (see source
code*). The parameters used for NMF are identical to the
ones used for C-NMF. The same features described in Sec-
tion 2 were used for the three algorithms. Finally, we also
compare the results for the TUT Beatles dataset with the ones
reported in [9], obtained by using different chromas and the
Mahalanobis distance for clustering.

4.1. Boundaries Evaluation

The boundaries are evaluated with the F-measure, which
quantifies whether there is an estimated boundary within +3
seconds from the annotated one, as described in [21]. On the
right side of Table 1 the F-measure with the precision (P)
and recall (R) values are presented.

As is presented on the table, C-NMF and NMF out-
perform SI-PLCA in both the TUT Beatles and SALAMI
datasets. NMF obtains slightly better results than C-NMF,
however this could be due to the over segmentation of NMF
when it happens to fall into a local minimum. Kaiser uses
the traditional “checkerboard” technique [2] to obtain bound-
aries, and also gets a lower score than our proposed method
of clustering the decomposition matrices, as described in
subsection 3.3.1.

4.2. Clustering Evaluation

We evaluate the clustering task using the pairwise F-measure
as explained in [10], with the addition of the entropy scores
for over-segmentation (S,) and under-segmentation (.5,,), as
suggested in [22]. The results are showed on the left side of
Table 1.

“http://marl.smusic.nyu.edu/resources/siplca-segmentation
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C-NMF outperforms both NMF and SI-PLCA. We can
see that S, is slightly better for SI-PLCA, suggesting that
both NMF and C-NMF under segment the data more than SI-
PLCA. However, S, indicates that SI-PLCA over-segments
the data a bit more than the others. Kaiser method outper-
forms the rest, but we believe that by using other distances
for clustering (like Mahalanobis, the one that Kaiser uses) we
might obtain better results.

4.3. Discussion

This technique follows a stochastic process, so it is prone to
fall into local minima. We experimentally found that a good
number of iterations to run is around 30 for C-NMF and 100
for NMF, since, as we previously discussed in Section 3.2,
C-NMF is more consistent. The features used in these ex-
periments are not key-invariant, and it should be noted that
adding key-invariance to the SSM, as described in [23], would
improve the results (but also increase its running time).

A limitation of this technique is that it might not capture
some boundaries originated from drastic changes in the fea-
tures, as opposed to the “checkerboard” novelty curve tech-
nique. We believe that combining the most salient boundaries
from both of these techniques could significantly improve the
detection of boundaries, and would ultimately get us a better
clustering of the sections.

C-NMF is considerably faster than SI-PLCA or the regu-
lar NMF because of the fewer number of iterations required.
It would be interesting to formally compare the speed of each
of these algorithms in the future, but it is already worth men-
tioning that SI-PLCA takes over 1000 seconds to run on the
TUT Beatles dataset, while it only takes 170 seconds with
the C-NMF approach. Computational efficiency is important
when running this sort of algorithms over large datasets, as is
the case for instance at The Echo Nest.

5. CONCLUSIONS

We introduced a new matrix factorization method to automat-
ically identify the structure of a song. By adding a convex
constrain to the NMF we showed that we obtain more con-
sistent decomposition matrices, producing centroids that bet-
ter represent the different sections of a song and improving
their clustering (or labeling). Moreover, the method finds the
boundaries of the sections by clustering the decomposition
matrices. Our proposed algorithm was evaluated against the
TUT Beatles and the SALAMI datasets, and we found better
boundary and clustering results (by using NMF and C-NMF
respectively) than other matrix factorization techniques while
being computationally efficient. We discussed the limitations
of our method, and proposed various ways of improving it.
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