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ABSTRACT

We present a new Bayesian multipitch analyzer that dispenses with a
precise optimization of parameter initialization or hyperparameters.
Our method uses a new family of prior distribution, characteristic
prior; it efficiently restricts the existence region of the latent vari-
ables, that is, the product of a conjugate prior and a characteristic
function. The update formulas become a simple form that is actu-
ally suitable for Gibbs sampling. We construct characteristic pri-
ors of harmonic structures based on psychoacoustical and musical
knowledge and apply them to nonnegative harmonic factorization.
Experimental results improve 5.2 points in F-measure under a tough
condition, random initialization with no hyperparameter optimiza-
tion.

Index Terms— multipitch estimation, nonnegative matrix fac-
torization, harmonic clustering, overtone corpus, Bayesian analysis

1. INTRODUCTION

Multipitch analysis [1–13] is one of the most appropriate music sig-
nal processing techniques today because it enables precise, higher-
level analysis and manipulations, including music structure visu-
alization [14], musical instrument identification [15], instrument-
based equalization [16], and musical signal manipulation [17]. Re-
cent Bayesian methods [3, 4] are particulary important because they
can explicitly model the relationship between multiple pitch activi-
ties and other musical features, such as musical instrument, chord,
and onset [18, 19]. Although further improvement of multipitch es-
timation is highly demanded for actual applications, it remains still
a challenging problem due to its optimization difficulty.

The main objective of Bayesian multipitch analyzers is to es-
timate the most likely combination of latent variables, including
pitch, volume, and timber. This can be difficult because there are a
number of inappropriate combinations that superficially describe the
observed spectrogram well. For example, a harmonic sound with
only its fifth overtone is quite rarely included in a musical piece, but
it is very likely to be estimated by untrained multipitch analyzers.
To avoid such errors, many authors have proposed precise heuristic
initialization [2, 5] and parametric [2, 4] and nonparametric [3] opti-
mizations of the prior distributions. These techniques have worked
well to a certain extent, but further refinement is difficult because
their optimization requires expensive procedures such as cross-
validation. One candidate to overcome the optimization problem is
an initialization-robust method with no hyperparameter optimiza-
tion, and so our research has been focused in this direction [5].

In this paper, we present a new method of optimizing the prior
distribution based on psychoacoustical and musical knowledge. Our
method uses a new family of prior distribution, characteristic prior,
that forces each latent variable to exist in a desirable range. The
distributions are the product of a non-informative conjugate prior

and a characteristic function. All we need to do is determine the
desirable range of each latent variable and simply represent it as the
characteristic function. This reduces the range of latent variables in
searching for an optimal solution. Our update formula takes a simple
form similar to conjugate variational Bayesian methods. We applied
these priors to nonnegative harmonic factorization (NHF) [20] and
confirmed an average F-measure improvement of 5.2 points against
random initialization.

2. CONVENTIONAL METHODS

In this section, we briefly discuss two conventional methods:
Bayesian nonnegative matrix factorization (NMF) [21] and Bayesian
nonnegative harmonic factorization (NHF) [20]. These two meth-
ods constitute the basis of the proposed method. In the following,
N ,W,P ,M,G, and D denotes normal, Wishart, Poisson, multi-
nomial, gamma, and Dirichlet distributions, respectively. Further,
t, f, k, and m denotes index of time frame, log-frequency bin, basis,
and overtone, respectively, and are numbered T, F, K, and M . A
bracket set [ ] denotes a set or vector over the index contained within.

2.1. Bayesian Nonnegative Matrix Factorization

An audio signal is composed of a small number of frequent sounds,
e.g., the C4 of a violin, the E5 of a piano, and the A5 of a flute.
The aim of NMF is to extract these template sounds and their tem-
poral activities. In their time-frequency representation, the timber
of a sound is visualized as a constant spectral pattern called ‘ba-
sis’. NMF assumes that each time frame spectrum of the observed
spectrogram Yt[f ] is the linear combination of K bases. This is rep-
resented as Ytf ≈ P

k uk
t hk

f , where uk
t represents the volume of

the k-th basis at the t-th frame and hk
[f ] represents the spectrum of

the basis. uk
t and hk

f are learned by minimizing the cost functionP
tf D(Ytf ||

P
k uk

t hk
f ). Here, D is a measure of difference, and

usually Kullback-Leibrer (KL) or Itakura-Saito (IS) divergences are
selected. A Bayesian counterpart of KL-NMF has been proposed by
Cemgil [21]. Its likelihood function is

p(Ytf |X [k]
tf ) = δ

 
Ytf −

KX
k=1

Xk
tf

!
, (1)

p(Xk
tf ) = P(Xk

tf |uk
t hk

f ), (2)

where Xk
tf represents the hidden spectrogram generated by the k-th

basis. To perform variational Bayesian estimation, a conjugate prior
distribution of the model parameters is assumed:

p(uk
t ) = G(uk

t |a0, b0), p(hk
f ) = G(hk

f |a0, b0). (3)

Since a standard NMF separately formulates multiple bins of a
basis, its spectral shape is not limited. This is sometimes inconve-
nient because one basis does not always correspond to one harmonic
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sound nor have the explicit parameter of a fundamental frequency.
Overall, it makes multipitch analysis especially difficult. As an al-
ternative, we represent the basis using a Gaussian mixture model
(GMM) that represents a harmonic structure, as

hk
f ∝

MX
m=1

τkmN (xf |μk + om, λ−1
k ), (4)

where xf denotes the log-frequency of the f -th bin, μk denotes the
k-th fundamental frequency, λk denotes the precision of the har-
monic components, om denotes the offset of the m-th component,
and τkm denotes the relative weight of the m-th component. The
adaptive estimation of these parameters enables an accurate estima-
tion. This attempt has previously been successful using Bayesian
nonnegative harmonic factorization (NHF) [20].

2.2. Bayesian Nonnegative Harmonic Factorization

Bayesian NHF extends Bayesian NMF to represent its basis with a
Gaussian mixture. Since Bayesian NMF uses Poisson distributions
to represent a quantized observed spectrogram, each basis at each
time frame is assumed to generate a discrete number of observa-
tion energy,

P
f Xk

tf . Our method denotes the energy with Sk
t and

represents it using a Poisson distribution. Further, the quantized en-
ergy is assumed to distribute on the log-frequency axis based on a
corresponding GMM distribution. The observation likelihood of an
energy quantum is

p(x|τk, μk, λk) =

MX
m=1

τkmN (x|μk + om, λ−1
k ). (5)

Next, we assume the observed spectrogram is a histogram of the
particles. The f -th frequency bin counts the number of the quanta
with a frequency of xf − ε/2 ≤ x ≤ xf + ε/2. The likelihood
function of the k-th basis and the m-th component at the t-th frame
and the f -th bin are derived as

p(skm
tf |uk

t , τk, μk, λk) =
∞X

Sk
t =0

p(skm
tf |Sk

t , τk, μk, λk)p(Sk
t |uk

t )

≈ P(skm
tf |εuk

t τkmN (xf |μk, λ−1
k )). (6)

This is known as the thinning of a Poisson distribution [22]. We
perform a full Bayesian estimation by constructing the joint model
with the following prior distributions:

p(Ytf |s[km]
tf ) = δ

 
Ytf −

X
km

skm
tf

!
, (7)

p(uk
t ) = G(uk

t |a0, b0), p(τk) = D(τk|α0), (8)

p(μk, λk) = N (μk|mk, (β0λk)−1)W(λk|w0, ν0). (9)

2.3. Derivation of Update Equations

Although Dirichlet and normal-Wishart distributions are not conju-
gate of a Poisson distribution, their posterior distribution become a
conjugate form when we take a limit ε → 0. This makes it easy to
estimate the latent variables using variational Bayes or Gibbs sam-
pling. If we use variational Bayes, the optimal variational posterior
distribution of uk

t becomes

q∗(uk
t ) = G(uk

t |ak
t , b0), ak

t = a0 +
X
fm

E[skm
tf ]. (10)

The posterior distributions of skm
tf , τk, μk, and λk are obtained in a

similar manner.
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Fig. 1. Example of characteristic prior. Blue dashed line indicates
normal distribution and black solid line indicates characteristic nor-
mal distribution. Corresponding latent variable is effectively cap-
tured as xmin ≤ x ≤ xmax.

Since the form of update equations is the same as those used for
LHA, the performances of the methods using variational Bayes are
strictly equal [20]. However, our method is notable for the following
two reasons.

1. Our method can easily represent the inter-frame dynamics of
volume. This is because it explicitly models the absolute vol-
ume of a basis using uk

t , while LHA models the relative vol-
ume of a basis using πt[k] ∼ D(αt[k]) to the total volume at
each frame. We have previously introduced a GMM structure
for the temporal dynamics in respect to HTC [2] and verified
the estimation accuracy improvement [20]．

2. The space complexity of the latent variables in LHA is
O(NKM), where N is the number of energy quanta. This
prevents us from using Gibbs sampling and the rich vari-
ety of non-conjugate models. Since the complexity remains
O(TFKM) in our model, it allows us to try a new family of
prior distributions, characteristic priors. This is the focus of
the next section.

3. CHARACTERISTIC PRIOR

3.1. Definition

The aim of Bayesian analysis is the joint estimation of latent vari-
ables. For GMM-based multipitch analyzers, including PreFEst [1],
HTC [2], LHA [3], and NHF [20], the main objective is that of the
volume uk

t , timber τk, pitch μk, and component precision λk. Some-
times the estimated results of the parameters are obviously wrong be-
cause they do not forbid parameters from having inappropriate val-
ues. For example, since the aim of harmonic clustering is to capture
the sharp peak of the harmonic components, the precision parameter
λk should be larger than a certain threshold.

We propose a new family of prior distribution to force each latent
variable to exist in a desirable range. This is called characteristic
prior, which is the product of a conjugate prior and a characteristic
function. A characteristic function χ assigns 0 or 1 for each entry of
the domain, A, and then specifies a subset B:

χ(x) =

j
1 (x ∈ B)
0 (otherwise)

. (11)

Hereafter, we represent the subset B using the same symbol of the
function χ. A characteristic Dirichlet distribution D∗ is defined as

D∗(x|α, χ) =
D(x|α)R

χ
D(x′|α)dx′ (x ∈ χ), (12)

where
R

χ
D(x′|α)dx′ is a normalization constant. Characteristic

normal distribution N ∗ and characteristic Wishart distribution W∗

are defined in a similar manner. An example of the characteristic
distribution is shown in Fig. 1.
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Fig. 2. Relative overtone weights of MIDI instruments at A4 (440
Hz). Solid lines indicate convex hull of characteristic function.
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Fig. 3. Graphical model of proposed method. Single solid lines
indicate latent variables and double solid line indicates observed one.

3.2. Prior Distributions of Pitch, Shape, and Timber

Here, we determine a desirable range for the NHF parameters. First,
we examine the pitch μk . Since we hope one basis will correspond to
one note number, we set the characteristic function that forces each
basis to appear in the semitone range:

χμ,k(x) =

j
1 (μ̂k − 50 ≤ x ≤ μ̂k + 50)
0 (otherwise)

. (13)

We set the basis number as K = 73 to cover six octaves. The con-
stant μ̂k corresponds to the log-frequency of the k-th note number.
The characteristic function of λk is also defined so that the standard
deviation of any harmonic component does not exceed 100 [cents]:

χλ(x) =

j
1 (x ≥ 1/10000[cents−2])
0 (otherwise)

. (14)

The characteristic function of harmonic structure is determined
by psychoacoustic basis, the basic idea of which has been described
in our previous paper [5]. Essentially, the excessive weight of the
upper overtones is psychoacoustically inappropriate and causes a
virtual pitch [23] of the overtone frequency. To avoid this type of
incorrect estimation, we set the upper bound of overtone weights by
examining individual note sounds generated using a MIDI synthe-
sizer (Fig. 2). The complete procedure will be described later, in the
evaluation section. Hereafter, we denote the convex hull for the k-th
basis using χτ,k.

4. CHARACTERISTIC NONNEGATIVE HARMONIC
FACTORIZATION

As a composition of NHF and characteristic priors, we formulated a
new Bayesian multipitch analyzer, characteristic NHF (CNHF). The
prior distribution of NHF is modified as

p(uk
t ) = G(uk

t |a0, b0), (15)

p(τk) = D∗(τk[m]|α0, χτ,k), (16)

p(μk|λk) = N ∗(μk|m0, (β0λk)−1, χμ,k), (17)

p(λk) = W∗(λk|w0, ν0, χλ). (18)

For the volume parameter uk
t , we retain the original prior distribution

because it is difficult to specify a desirable range for it.

4.1. Inference with Gibbs Sampling

Since the proposed method assumes non-conjugate priors, it is dif-
ficult to use deterministic procedures such as variational Bayes. In-
stead, we use Gibbs sampling to update the latent variables.

The latent variables are iteratively drawn from their conditional
posterior distributions. For example, the posterior probability of skm

tf

is described as

p(s
[km]
tf |Y, S¬tf [km], u, π, μ, λ) = M(s

[km]
tf |Ytf , ρ

[km]
tf ), (19)

ρ̃km
tf = uk

t τkmN (xf |μk + om, λ−1
k ), (20)

ρkm
tf =

ρ̃km
tfP

k′m′ ρ̃k′m′
tf

, (21)

where ρkm
tf is the parameter for updating skm

tf . The posterior distri-
bution of uk

t , τk, μk, and λk are obtained by taking a limit ε → 0:

p(uk
t |Y, S, u¬kt, τ, μ, λ) ≈ G(uk

t |ak
t , b0), (22)

p(τk|Y, S, u, τ¬k, μ, λ) ≈ D∗(τk|αk[m], χτ,k), (23)

p(μk|Y, S, u, τ, μ¬k, λ) ≈ N ∗(μk|mk, (βkλk)−1, χμ,k), (24)

p(λk|Y, S, u, τ, μ, λ¬k) ≈ W∗(λk|wk, νk, χλ). (25)

The posterior hyperparameters ak
t , αkm, mk, βk, wk, and νk are

represented as

ak
t = a0 +

X
fm

skm
tf , αkm = α0 +

X
tf

skm
tf , (26)

βk = β0 +
X
tfm

skm
tf , νk = ν0 +

X
tfm

skm
tf , (27)

mk =
m0β0 +

P
tfm skm

tf (xf − om)

β0 +
P

tfm skm
tf

, (28)

w−1
k = w−1

0 + β0m
2
0 +

X
tfm

skm
tf (xf − om)2 − βkm2

k. (29)

The graphical model of the proposed method is shown in Fig. 3.

4.2. Implementation Issue

During the estimation, it is required to draw samples from character-
istic Dirichlet, normal, and Wishart distributions. One possible and
strict algorithm is to draw samples from corresponding standard dis-
tributions and reject ones that are not included in the characteristic
region. The problem with this algorithm is the unbounded num-
ber of rejections. For example, the expected number of drawing is
(
R

χ
D(x′|α)dx′)−1 for a characteristic Dirichlet distribution, which

may become an intractably large number. Instead, we use the fol-
lowing approximate sampling algorithm.
Characteristic normal and Wishart distributions We first try
the strict algorithm described above with 100 samples and use the
first appropriate one if any sample within the range has been sam-
pled. Otherwise, the value of the last sample is rounded to the appro-
priate range. This optimization is similar to the iterative conditional
mode (ICM) [24].
Characteristic Dirichlet distribution In this case, sampling is
performed within a high-dimensional space. This makes the sam-
pling more difficult. The strict algorithm is performed with 100 sam-
ples and afterward an approximated algorithm is evaluated. One pos-
sible approximation is a Metropolis-Hasting algorithm using some
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Fig. 4. Performance comparison of conventional and proposed meth-
ods. Horizontal axis shows conventional performance (FOCLHA),
vertical axis shows improvement (FCNHF − FOCLHA), and each dot
indicates one musical piece.

proposal distributions, such as normal or Cauchy, but it does not al-
ways work properly because an appropriate proposal distribution is
difficult to determine due to the complex shape of the convex hull.
Instead, we try the Metropolis algorithm with 200 iterations with the
proposal of uniform distribution over the convex hull and use the last
sample. This is performed using Delaunay triangulation and the lin-
ear projection of the samples from a Dirichlet distribution D(x|1).
We used the Qhull library for this procedure [25].

5. EVALUATION

To evaluate the performance of the proposed method with no initial-
ization or parameter optimization, we conducted a multipitch estima-
tion experiment with three multipitch analyzers: LHA [3], which is a
conventional Bayesian method, OC-LHA [5], which is our previous
method that is robust against initialization and parameter optimiza-
tion, and the proposed method.

5.1. Harmonic Region

As the first step of the experiment, we determined the characteris-
tic function of the harmonic structure. For the 73 note numbers, we
recorded the musical instrument sounds of program 1 to 80 for one
second using a MIDI synthesizer (Roland SD-80). The signals were
then transformed into wavelet spectrograms. Since some recorded
sounds are inappropriate for retrieving the overtone weight, we re-
moved them using two criteria. First, sounds that had more than 50%
energy on their inharmonic part were removed. To do this, we inte-
grated the amplitude spectrogram over its overtone frequencies (6
overtones and ± 100 [cents]) and compared it with the total amount.
Second, we calculated their virtual pitch using subharmonic summa-
tion (SHS) [23] and retained ones whose virtual pitch corresponded
to the correct note number. Further, the spectrograms are integrated
over the overtone frequency bands to obtain an overtone vector. The
redundant vertices were efficiently reduced by using an approxima-
tion algorithm [5].

5.2. Experimental Data

For the experiment, we used 40 musical pieces from the RWC Mu-
sic Database [26]. Five piano solo pieces (Jazz, No. 1–5), five guitar
solo pieces (Jazz, No. 6–10), ten jazz duo pieces (Jazz, No. 11–20),
and ten jazz pieces with more than three players (Jazz, No. 21–30)
were excerpted. The database includes both MIDI and audio ver-
sions of the pieces, but we used only the MIDI version because
there is no temporal alignment between the two versions. The cor-
responding audio signals were recorded using a MIDI synthesizer

Table 1. F-measure performance of three multipitch analyzers. Bold
values indicate maximum performance.

Music type LHA OC-LHA CNHF

Piano solo 0.339 0.563 0.610
Guitar solo 0.137 0.659 0.678
Jazz (Duo) 0.228 0.484 0.547

Jazz (Trio∼) 0.258 0.474 0.520
Chamber 0.247 0.464 0.529

(YAMAHA MOTIF-XS). The drum tracks were all muted and re-
moved from the overall experiment, and the number of players ex-
cludes the drum player. For the experiment, we used only the first
32 seconds of each piece due to the heavy computational time.

5.3. Evaluation Conditions

To evaluate the robustness against initialization, we set the latent
variables so that they reflected none of their prior information. That
is, we initialized the responsibility parameters of the EM algorithms
with uniformly random distribution. All hyperparameters were set
as non-informative to evaluate the robustness against parameter op-
timization. The number of iterations was set to 1000, 1000, and 100,
respectively, for the three methods. This was determined experimen-
tally due to estimation accuracy saturation.

After the iterations, we calculated the sound activity in a binary
form. This was done by setting a threshold on a posterior hyperpa-
rameter, Ntk . Further, the indices of basis were exchanged to fit 128
MIDI note numbers. Finally, the results were represented as T ×128
binary matrices. Estimation accuracy was calculated by comparison
with ground truths generated from the MIDI files. The thresholds
were separately optimized for each method and piece to compare
the potential performance.

5.4. Results

The proposed method outperformed the conventional methods for
all five data sets (Table 1). The improvement of F-measure was 5.2
points on average. Fig. 4 shows the ratio of improvement against
the previous method. The fact that the improvement is big when the
performance of the previous method is weak, indicates that the pro-
posed method works fine for a wider variety of musical pieces. For
one musical piece, the performance was substantially worse than the
previous method (Jazz, No. 20). In this case, the sustain pedal of a
piano is pressed down throughout the musical piece, and the evalu-
ation did not work properly. If we exclude this piece, the improve-
ment was 5.8 points on average.

6. CONCLUSION

In this paper, we presented a new Bayesian multipitch analyzer that
does not require a precise optimization of parameter initialization or
hyperparameters. A new family of prior distribution, characteristic
prior, was introduced to restrict the existence region of the latent
variables. The update formulas become a simple form and suitable
for Gibbs sampling. We applied characteristic priors to NHF and
obtained an initialization-robust multipitch analyzer. Experimental
results showed a 5.2 points F-measure improvement against random
initialization with no hyperparameter optimization. In future, we in-
tend to integrate higher-level structures of musical pieces such as
musical instruments and verses to improve the estimation accuracy
further. This research was partially supported by KAKENHI (S)
No. 24220006 and (B) No. 24700168.
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