
AN OPEN-SOURCE DRUM TRANSCRIPTION SYSTEM FOR PURE DATA AND MAX MSP

Marius Miron, Matthew E.P. Davies, Fabien Gouyon

INESC TEC, Sound and Music Computing Group, Porto, Portugal

ABSTRACT

This paper presents a drum transcription algorithm adjusted to
the constraints of real-time audio. We introduce an instance
filtering (IF) method using sub-band onset detection, which
improves the performance of a system having at its core a
feature-based K-nearest neighbor classifier (KNN). The ar-
chitecture proposed allows for adapting different parts of the
algorithm for either bass drum, snare drum or hi-hat cymbals.
The open-source system is implemented in the graphic pro-
gramming languages Pure Data (PD) and Max MSP, and aims
to work with a large variety of drum sets. We evaluated its
performance on a database of audio samples generated from a
well known collection of midi drum loops randomly matched
with a diverse collection of drum sets. Both of the evaluation
stages, testing and validation, show an improvement in the
performance when using the instance filtering algorithm.

Index Terms— drum transcription, feature-based classi-
fication, real-time audio, machine learning, signal processing

1. INTRODUCTION

We propose an algorithm for automatic transcription of drum
performances and drums loops. Our goal is to automatically
extract symbolic notation [1] which would play a vital role in
the creation of tools for musicians, for example, in expressive
transformation of drum loops, recombination or accompani-
ment. Moreover, a real-time implementation could be used in
live music situations, where it could enhance the musician’s
performance.

Automatic transcription of percussion sound events as-
sumes detecting and labeling specific drum events. There are
a few problems which can arise when dealing with this task,
which relate to the acoustic diversity of the drum sounds we
want to label, as they can be produced by a variety of drum
sets, to the difference in loudness of different loops, and to the
fact that two or more sounds can be simultaneous or overlap.

This work is financed by the ERDF – European Regional Development
Fund through the COMPETE Programme (operational programme for com-
petitiveness) and by National Funds through the FCT – Fundacao para a
Ciencia e a Tecnologia (Portuguese Foundation for Science and Technol-
ogy) within project Shake-it, Grant PTDC/EAT-MMU/112255/2009. Part of
this research was supported by the CASA project with referencePTDC/EIA-
CCO/111050/2009 (FCT), and by the MAT project funded by ON.2.

Existing approaches for drum loops transcription vary,
from training different classifiers in [2], and [3] , to using
noise subspace projection [4] , wavelet analysis or bandpass
filters [5], or a mixture of prior subspace analysis and in-
dependent component analysis [6]. The drawbacks of the
previous research include testing the algorithm on a dataset
recorded with a small number of drum kits as in [6], [2], and
[3] , or detecting just bass and snare drums [5].

Labeling drums in polyphonic audio is a difficult chal-
lenge because of the presence of other instruments. The task
was resolved either by training a classifier [7] , by combining
principal component analysis and non-negative matrix factor-
ization [8], or by computing an adaptive spectogram for each
drum class [9].

With respect to real-time audio, a Pure Data algorithm
classifying isolated percussion sounds was described by Brent
[10]. Additionally, drum detection was used in a real-time
beat tracking system [11, p 101]. The method detects solely
bass and snare drums, and is never evaluated in the scope of
drum transcription. The author states that this module offers
approximate detection to achieve phase alignment, and an im-
proved detection method could help better his purpose [11, p
190].

Despite the number of methods published, very little code
has been made available and most systems are not targeted
towards processing data in real-time, or even causally. Hence,
we propose an open-source system that works in real-time and
offline. We are building on the previous approaches as we
are using an onset detector for percussive events, a feature
computation step, and a trained classifier for each drum class,
labeling an event as a member or a non-member of that class.
We are introducing a pre-classification stage, a method based
on sub-band onset detection, with the purpose of filtering the
instances which are fed to each class. The results show that
the instance filtering (IF) and a KNN classifier, give better
results combined than evaluated separately.

The remainder of this paper is structured as follows: in the
Section 2, we describe the architecture of the system, the on-
set detection, instance filtering, feature selection and classifi-
cation, followed by the implementation in PD and Max MSP.
In the Section 3, we present the results of the two evaluation
stages, testing and validation, with the proper discussion.

221978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

Fig. 1. The architecture of the drum transcription system

2. METHOD

Our algorithm takes as input stereo live audio, sampled at
44100 Hz, generated by acoustic or electronic drum kits,
comprising bass drums, snare drums, hi-hat cymbals and
tom drums, and detects bass drum, snare drum and hi-hat
cymbals. The architecture of the system involves an event de-
tection stage, and a feature extraction and classification stage.
The first step is to detect possible drum onset candidates for
classification. Secondly, a set of features is calculated from
a salient part of the audio, after the onset has been detected.
Finally, a KNN classifier assigns a label to the instance can-
didate.

Because we want to filter out incorrect instances that
might be seen by the classifier, we apply an instance filtering
algorithm based on sub-band onset detection, which occurs at
a pre-classification stage, after the initial onset detection. As
the first onset detection has to be quick, the second one needs
to have a high resolution to detect changes in the specific
sub-bands.

We start with the general assumption that we can have all
combination of kick, snare and hi-hat along with tom-toms at
the same time. Thus, for making our system able to detect
simultaneous events, we opted for labeling each onset as kick
or non-kick, snare or non-snare, hi-hat or non-hi-hat. This
leads to the use of three binary classifiers, as in [7], which
have to be trained separately and function in parallel. The
feature computation also functions separately because we are
computing the feature after filtering the signal in certain fre-
quency bands. Similarly, we are using three instance filtering,
trying to filter events for each drum class, as described in Fig-
ure 1.

2.1. Event detection

2.1.1. Onset detection

We first detect the onsets. Because we are working with
real-time audio, the onset detection algorithm has to be fast

Fig. 2. a)The audio signal and the HFC onset detection func-
tion values; b),c),d) The complex onset detection functions
values for each drum class, as a part of the event detection
and instance filtering stage.

enough to capture a significant part of drum sound, as the
analysis part is only triggered by this onset. We are using the
high frequency onset detection (HFC) as it was reported to be
the best for percussive onsets [12]. In order to improve the
responsiveness and decrease the delay time from the actual
onset, we set the window size to 512 samples (11.6 ms) and
hop size 128 samples (2.9 ms).

2.1.2. Instance filtering

The HFC onset detection uses a smaller window size because
it needs to be fast. Additionally, it is very likely to have over-
lapping sounds. Thus, the HFC onset detection could feed
a number of incorrect instances to the classifier, resulting in
a drop in performance. Furthermore, as the classifying stage
occurs, some instances seen by the classifier are not character-
istic to the represented data (noise) [13, p 134]. We propose
a pre-classification algorithm for filtering the instances which
are given as input to the KNN classifier, in order to improve
performance.

This additional stage assumes filtering events in three fre-
quency bands for the three classifiers. We are using three ad-
ditional onset detectors, with a higher frequency resolution,
that can detect onsets on specific bands. Three onset detec-
tors work on the filtered signal, and have to react to changes
in the spectrum in those specified bands and not only in the
high frequency band (Figure 2). We use the complex domain
onset detector with double window (1024 samples, 23.2 ms)
and hop size (256 samples, 5.8 ms) because it tracks the spec-
tral differences across the frames [12].

The number of frames taken into consideration and the big
window size introduce a higher delay for the complex onset,
hence it will always come after the HFC one. If no detection
is made in a certain frequency band, then that instance is not
sent to the classifier. We can adjust each onset detector to act
particularly to a specific drum type.

222

2.2. Feature Computation and Classification

Since different drum strokes can occur at the same time, we
have three processing streams running in parallel and we will
compute all the features on the filtered audio, separately, for
each classifier. We will low pass (LPF) filter the audio for the
bass drum, band pass (BPF) filter it for the snare drum and
high pass (HPF) filter it for the hi-hat. Studying the acoustic
properties of each class and their variance, we pick empiri-
cally the values for the central/cut-off frequency (Hz), as it
follows: 90 Hz for BD, 280 Hz (20 Hz bandwidth) for SD,
9000 Hz for HH.

Another reason for implementing such filters is the classi-
fier’s sensitivity to noisy features [13, p 208], when just a few
features carry important information. In this case, filtering the
signal for a specific drum class, before computing the actual
features, diminishes the weight of the noisier features that are
not relevant for that class.

Taking into account the inter-onset interval at the fastest
tempo and the time envelope for each class, the salient part of
the sound is set to the first approximately 100 ms (10 frames
of 2048 samples with an overlapping factor of 75%) after the
detected onsets [1]. In this way we will capture the most im-
portant part of the decay of the instrument, on which we will
compute a set of features for either bass drum, snare or hi-
hat, and their means over these frames. If another onset oc-
curs earlier than this interval, the salient part is considered to
be the inter-onset interval between the two successive onsets.
The window size is larger to attain higher spectral resolution.

Because a certain drum stroke can last less than 100 ms,
and because it is likely to have a new onset overlapping with
the decay tail of onset before, we choose to weight the fea-
tures with the value of the root mean square (RMS) [1] in
order to give less weight to silent frames.

A set of spectral features, energy in bark bands and
bark spectrum cepstral coefficients (BFCC) were reported
to achieve good performance when classifying unpitched per-
cussion [14]. The following features are chosen: energy in 23
bark bands, 23 bark frequency cepstrum coefficients, spectral
centroid, spectral rolloff, as described in [10]. The classifica-
tion stage uses a KNN classifier, which computes the closest
class for a given instance, as described in [13, p 209].

2.3. Implementation

We choose to implement our system in PD, the PD-extended
set of libraries, as well as the libraries described below. For
the onset computation stage we are using a wrapper for the
aubio library [12]. The chosen values for the HFC onset
detection [12] parameters are -80 dB for the silence threshold
and 0.3 for the onset threshold. For the complex onsets, we set
these parameters to -50 dB and 0.8 for bass drum, -70 dB and
0.7 for snare, and -120 dB and 0.5 for hi-hat. The peak thresh-
old is particularly high because we ought to detect very clear
peaks in specific frequency bands, and the silence threshold is

low because we need to have a higher tolerance for the peaks
that do not fall in the bands we apply the filtering.

The three filters are implemented using the PD’s ggee
library to generate coefficients for the correspond biquad fil-
ters. For the KNN classifier and the feature computation we
are using the patches included in the timbreID library as
described in [10].

The PD implementation allows for modularity, every
audio-processing patch working with its own window size
and hop size, independently of the ones of the environment,
adapting them for the requirements of each task. The open-
source code and patches are available online on git reposito-
ries for PD [15] and Max MSP [16].

3. EVALUATION

The evaluation involves three stages: training, testing and val-
idation. The three datasets are completly independent.

First, we train our system on a dataset. We opted for a
training database made of 884 sound excerpts of which 284
bass drum, 284 snare drum, 272 open/closed hi-hat or ride, 44
toms gathered from different drum sets, most of them acous-
tic. We train three classifiers using this data, for bass/non-
bass, snare/non-snare and hi-hat/non-hi-hat.

In the second stage, we test on a smaller collection, ad-
justing the settings to achieve optimal results, and then we
validate the obtained configuration on a larger collection. The
audio for the test and validation data sets is generated using
Timidity++[17], by randomly matching midi drum loops to
a various set of drum kits soundfonts, and contains a mix-
ture of kicks, snares, hi-hat cymbals, and toms. For testing,
we are using 177 drum loops (5204 instances) of different
genres from the Groove Monkee [18] collection and 50 drum
kits. For the validation stage, we randomly matched 242 loops
(13712 instances) from the Loop Loft Drumatic Beats collec-
tion with 75 drum kits. The system is evaluated on the PD
implementation.

We also evaluate onset detection stage, and the system
with and without instance filtering, in order to know what
influence has each stage on the final results. To assess the
performance we are using an F-measure F , precision p, recall
r, and accuracy as described in [13, p 270]. The window used
for evaluation is 35 ms.

3.1. Testing and Validation

3.1.1. Event detection evaluation

The HFC onset detection gives the following results for the
testing dataset: F = 0.93, p = 0.95, and r = 0.91. The
class-wise accuracy for kick is 0.89, for snare 0.87, and for
hi-hat 0.94. The delay from the actual onset depends on the
window and hop sizes, and the majority of onsets are detected
within 10ms-15ms time frame.

223

Testing Validation
F p r F p r

BD IF 0.76 0.68 0.86 0.65 0.54 0.81
BD C 0.75 0.70 0.81 0.52 0.40 0.74
BD C+IF 0.85 0.91 0.80 0.72 0.71 0.73
SD IF 0.57 0.43 0.85 0.60 0.46 0.83
SD C 0.74 0.75 0.72 0.74 0.73 0.74
SD C+IF 0.79 0.88 0.71 0.79 0.86 0.74
HH IF 0.88 0.84 0.93 0.77 0.66 0.93
HH C 0.85 0.94 0.78 0.79 0.72 0.89
HH C+IF 0.85 0.95 0.77 0.88 0.89 0.87
Overall C+IF 0.84 0.93 0.76 0.81 0.83 0.79

Table 1. The comparison of the results when testing the sys-
tem with no classifier: IF, using just the classifier C, and com-
bining the classifier with instance filtering C+IF

We evaluate how good the instance filtering part performs
in order to asses the performance of the event filtering stage.
We test the system using just the output of the filtering stage
without the classifier, as seen in Table 1. The precision of
the instance filtering is high for hi-hat (0.84), lower for bass
drum (0.68) and the lowest for the snare drum (0.43), where
we can’t exclude for example tom toms, high pitched bass
strokes or low pitched hi-hats. Additionally, we compute the
specificity [13, p 270], a measure of how filtering rejects the
instances of other classes, obtaining 0.86 for BD, 0.70 for SD
and 0.84 for HH.

3.1.2. Testing and Validation

In order to asses the performance and stability of our system
after the instance filtering step, we evaluate it with and with-
out this component. The original testing configuration is the
one using 23 BFCC, energy in 23 Bark bands and the spec-
tral descriptors mentioned in Section 2.2. Furthermore, we
optimised the parameters of the classifier for testing. We de-
termined a optimal value k = 5, the number of neighbors,
by comparing different k with the overall accuracy. We used
Euclidean distance [13, p 25] to find the closest neighbors.

We add the instance filtering on the initial configuration,
and this gives a clear improvement, as seen in Table 1. Just
using the instance filtering, with no classifying stage, shows
better results for the hi-hats, mainly because their inter-onset
interval is too short to allow computing feature and they are
segregated at the high frequencies in the spectrum. On the
other hand, for bass and snare drums, there is an increase in
the precision p, which leads to the conclusion that the instance
filtering helps to decrease the numbers of false positives.

After testing the data, picking the best settings for each
class, we want to validate on the large validation set. As seen
in Table 1, the performance is similar to the one of the first
dataset, with a slight drop in performance for the bass drum.

This is related to the poor accuracy of the HFC onset detection
in detecting the BD onsets (84%) and to the presence of low
frequency tom drums, which results in low precision. How-
ever, the hypothesis that the algorithm performs better for the
hi-hat just with IF is not confirmed. The classifier holds an
important role in separating a large variety of sounds.

The last row of Table 1 presents the overall performance
of the C+IF system. Additionally, we compute the standard
deviation Fstd [13, p 39] and the mean Fmean of the overall
F-measure. We obtain Fstd = 0.14 and Fmean = 0.82 for
testing and Fstd = 0.17 and Fmean = 0.77 for validation.

In conclusion, a system that relies only on sub-band onset
filtering (IF) is unable to discriminate well between classes,
and detects a large number of false positives. On the other
hand, a system that uses only a KNN classifier is unable to
react to the dynamics of a drum performance, especially to
overlapping drum strokes. Using the IF stage along with the
classifier, increased the precision and overall performance for
all the classes.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a real time drum transcription
system, implemented in Pure Data. Our transcription system
highlights that, under the constraints of a real-time audio, sim-
ple sub-band filtering can increase the system’s performance
by reducing the number of false positives. Moreover, we pro-
posed the used of a class specific approach in order to maxi-
mize detection for each drum class. We tested and validated
on a diverse collection of drum loops created with a variety
drum kits in order to prove its robustness.

Our algorithm works in real-time as [3], [7] and [10], but
it doesn’t require adapting the model for a particular drum kit.
The variety of the model (training, testing and validation data
sets) is what distinguish our approach from the [19] (one drum
kit for training and two for testing). We are not building decoy
tail models as in [3], but we are using an instance filtering
stage to filter these tails which overlap to the next sound.

A future step will be to train the model with additional
sounds, because it is not adapted to detect other percussion in-
struments. Moreover, the instance filtering stage could adapt
the parameters of the filters to the incoming signal, rather than
using the pre-defined values. We can improve the robustness
of onset detection by passing the incoming signal through a
compressor and dc-blocking module. We can adjust the sys-
tem’s features by studying how intra-class correlation is influ-
enced by the IF stage and by the selected features. Further-
more, we can look at the relation between inter-class micro-
timing and class-wise accuracy.

224

5. REFERENCES

[1] Marchini M. and H. Purwins, “An unsupervised sys-
tem for the synthesis of variations from audio percussion
patterns,” in 7th International Symposium on Computer
Music Modeling and Retrieval (CMMR), 2010, pp. 277–
278.

[2] O. Gillet and G. Richard, “Automatic transcription
of drum loops,” International Conference on Acous-
tics, Speech, and Signal Processing ICASSP04, Mon-
tral, Qubec, 2004, pp. 269–272, 2004.

[3] E. Battenberg, V. Huang, and D. Wessel, “Toward live
drum separation using probabilistic spectral clustering
based on the itakura-saito divergence,” in AES 45th Con-
ference: Applications of Time-Frequency Processing in
Audio, Helsinki, Finland, 2012.

[4] O. Gillet and G. Richard, “Drum track transcription
of polyphonic music using noise subspace projection,”
Proceedings of the 6th International Conference on Mu-
sic Information Retrieval, pp. 92–99, 2005.

[5] G. Tzanetakis, A. Kapur, and R. McWalter, “Subband-
based Drum Transcription for Audio Signals,” 2005
IEEE 7th Workshop on Multimedia Signal Processing,
pp. 1–4, Oct. 2005.

[6] D. Fitzgerald, R Lawlor, and E. Coyle, “Drum tran-
scription using automatic grouping of events and prior
subspace analysis,” Digital Media Processing for Mul-
timedia Interactive Services - Proceedings of the 4th Eu-
ropean Workshop on Image Analysis for Multimedia In-
teractive Services, pp. 306–309, 2003.

[7] K. Tanghe, S. Degroeve, and B. De Baets, “An algorithm
for detecting and labeling drum events in polyphonic
music,” in Proceedings of the first Music Information
Retrieval Evaluation eXchange (MIREX), 2005.

[8] J. Paulus and T. Virtanen, “Drum transcription with non-
negative spectrogram factorisation,” 13th European Sig-
nal Processing Conference, 2005.

[9] K. Yoshii, M. Goto, and H. Okuno, “Drum sound recog-
nition for polyphonic audio signals by adaptation and
matching of spectrogram templates with harmonic struc-
ture suppression,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 15, no. 1, pp. 333–345,
Jan. 2007.

[10] W. Brent, “Cepstral analysis tools for percussive tim-
bre identification,” Proceedings of the 3rd International
Pure Data Conference, 2009.

[11] Nicholas M. Collins, Towards Autonomous Agents for
Live Computer Music: Realtime Machine Listening and
Interactive Music Systems, Ph.D. thesis, 2006.

[12] P. Brossier, Automatic annotation of musical audio for
interactive applications, Ph.D. thesis, Queen Mary, Uni-
versity of London, 2006.

[13] D. Hand, Principles of data mining, vol. 30, The MIT
Press, Jan. 2001.

[14] F. Gouyon, P. Herrera, and A. Dehamel, “Automatic
labeling of unpitched percussion sounds,” in AES 114th
Convention, 2003.

[15] M. Miron, M.E.P. Davies, and F. Gouyon, “Pure
data source code and patches for the open-source
drum transcription system,” http://github.com/
SMC-INESC/drumtranscription_pd/.

[16] M. Miron, M.E.P. Davies, and F. Gouyon, “Max
msp source code and patches for the open-source
drum transcription system,” http://github.com/
SMC-INESC/drumtranscription_maxmsp/.

[17] Timidity++, “Timidity++ software syntesizer,” http:
//timidity.sourceforge.net/.

[18] Groove Monkee, “Groove monkee midi drum
loops collection,” http://www.groovemonkee.
com/en/.

[19] O. Gillet and G. Richard, “Supervised and unsupervised
sequence modelling for drum transcription,” Proceed-
ings of the International Conference on Music Informa-
tion Retrieval 2007, pp. 219–224, 2007.

225

