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ABSTRACT
We address the problem of multi-instrument recognition in
polyphonic music signals. Individual instruments are mod-
eled within a stochastic framework using Student’s-t Mix-
ture Models (tMMs). We impose a mixture of these instru-
ment models on the polyphonic signal model. No a priori
knowledge is assumed about the number of instruments in the
polyphony. The mixture weights are estimated in a latent vari-
able framework from the polyphonic data using an Expecta-
tion Maximization (EM) algorithm, derived for the proposed
approach. The weights are shown to indicate instrument ac-
tivity. The output of the algorithm is an Instrument Activity
Graph (IAG), using which, it is possible to find out the instru-
ments that are active at a given time. An average F-ratio of
0.75 is obtained for polyphonies containing 2-5 instruments,
on a experimental test set of 8 instruments: clarinet, flute,
guitar, harp, mandolin, piano, trombone and violin.

Index Terms— Student’s-t Mixture Models, Latent Vari-
able, Polyphony, Instrument Recognition, Instrument Activity
Graph.

1. INTRODUCTION
The primary challenge in Music Information Retrieval (MIR)
is to unravel the underlying polyphonic texture and multi-
instrument structure of the music signal. Apart from obtain-
ing melodies, multi-instrument recognition in polyphonic mu-
sic signals plays a major role in the science of MIR.

Automatic instrument recognition approaches can be
broadly classified into two categories [1]. In the first cat-
egory, instrument recognition is performed after separating
the individual instrument signals from the polyphonic music
signal [2–5], using techniques such as Probabilistic Latent
Component Analysis (PLCA), Non-negative Matrix Factor-
ization (NMF), instrument specific harmonic models. In the
second category, detection of the constituent instruments in
the polyphony is addressed without separation [6–8]. In the
recent years, the problem of jointly addressing transcription
and instrument recognition is seen in [9–12].

In this paper, the focus is on multi-instrument recogni-
tion. We propose a latent variable (LV) framework for identi-
fying the constituent instruments of a polyphonic music sig-
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Fig. 1: a) Block diagram of the proposed approach. b) Prob-
abilistic graphical model of the proposed approach.

nal (Section (2)). Contrary to other LV approaches, we per-
form detection without signal separation. Stochastic models
are used to model individual instruments (Section (3.1)). The
probability density function of the polyphonic signal is then
modeled as a convex combination of the individual instru-
ment models. The weights of the convex combination are
estimated from the polyphonic music signal using an Expec-
tation Maximization (EM) algorithm. It is shown that these
weights indicate the presence or absence of an instrument in
the polyphony. We construct an “Instrument Activity Graph”
(IAG) (Section (2.1)) using the model-weights, to indicate the
activity of each modeled instrument across time. Performance
of the proposed approach on polyphonic signals from RWC
database [13] is shown in Section (3.2). The contributions
of this paper are: i)A generic LV approach for music instru-
ment recognition, which admits different kinds of instrument
models. ii) Experimental evaluation of Student’s-t Mixture
Models (tMMs) as efficient instrument models for recogni-
tion. iii) A graphical display of instrument activity over time
(IAG). iv) Performance analysis on varying test data length
for online applications. Relation to prior work is detailed in
Section (4).

2. THE PROPOSED APPROACH

Figure 1a shows a block diagram of the proposed approach.
The training phase consists of building stochastic mod-
els for each instrument. Consider a set of M instruments
I = {Ik}Mk=1. Each instrument Ik is trained on feature
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vectors Yk = [fk1, fk2, · · · , fkTk
], obtained from its mono-

phonic signal yk[n]. fkt ∈ Rd is a feature vector at tth frame.
Let λk denote the parameters of the probability density func-
tion (p.d.f.) used to model the instrument Ik.

Consider a polyphonic signal x[n]. We refer to the instru-
ments contributing to this signal as active instruments. The
objective is to identify the active instruments in any given in-
terval of a polyphonic signal. In the testing phase, we subject
the features estimated from x[n] to the proposed LV analy-
sis to obtain the activity of each of the M instruments as de-
scribed below.

Consider the jth segment of x[n]: sj , {x[n]}j0+Nw

n=j0+1,
where j0 , (j − 1)Nsh, Nw is the segment length and Nsh

is the segment shift. Let Sj =
[
sj1, s

j
2, . . . , s

j
T

]
denote T

feature vectors estimated from the segment sj , where sjt ∈
Rd. The feature extraction scheme used to obtain Sj from sj
is identical to that used to obtain Yk from yk[n]. We introduce
a latent variable Zj

t ∈ BM ; where the set B = {0, 1}, to
discover the active instruments in the jth segment of x[n]. Let
the kth element of the vectorZj

t be denoted as zjt (k). zjt (k) =
1 if sjt has contribution from the kth instrument Ik. Hence,
one or more elements of the vector Zj

t can be unity, indicating
the presence of corresponding instruments. Let λ = {λk}Mk=1

denote conditional p.d.f. parameter set. We model each vector
of jth segment in terms of the known instruments models as:

p
(
sjt ;λ

)
,

M∑
k=1

p
(
zjt (k) = 1

)
p
(
sjt | z

j
t (k) = 1;λ

)
; (1)

s.t.
∑M

k=1 p
(
zjt (k) = 1

)
= 1. Equation (1) follows from

the assumption that the music signal has contributions at least
from one of theM modeled instruments. Therefore, (1) holds
even when Yk and Sj are not linearly related. The objective
of using such a mixture of instrument models is to express the
unknown (polyphonic signal) in terms of the known (individ-
ual instrument models). The validity of such a formulation
for convolutive mixtures is explored in the context of speech
in [14].

The significance of the above formulation is that, in gen-
eral, a non-linear model in the feature vector space is viewed
as a linear model in the probability space. The p.d.f. of
the polyphonic signal is expressed in terms of the known
instrument-models. From the definition of the latent variable,
it follows that: p

(
sjt | z

j
t (k) = 1;λ

)
= p

(
sjt ;λk

)
.

Assuming that the distribution of latent variable does not
vary within the jth analysis segment, we denote p

(
zjt (k) = 1

)
as αj

k. Thus, (1) can now be written as,

p(sjt ;λ) , p
(
sjt ;λ, α

)
=

M∑
k=1

αj
k p
(
sjt ;λk

)
; (2)

s.t
∑M

k=1 α
j
k = 1, where αj ,

[
αj
1, α

j
2, · · · , α

j
M

]
where,

αj ∈ RM .
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Fig. 2: (Color Online): An example indicating the estimated
α and the ground truth for a 3-polyphony.

Figure 1b shows the graphical model summarizing the
proposed latent variable approach. The model-weights, αj es-
timate the contribution of different instrument models to the
mixture model, p(sjt ;λ). Assuming that the feature vectors
in Sj are independent and identically distributed across t, we
have:

p (Sj ;λ, α) =

T∏
t=1

p
(
sjt ;λ, α

j
)
. (3)

To estimate the contribution of individual instrument models,
αj are learnt from {sjt} and the instrument models parameter-
ized by λ. We use the maximum likelihood estimation (MLE)
approach to solve for αj

k, using the EM algorithm [15]. Let
the posterior probability at the mth iteration be denoted as
γjkt(m) and, γjkt(m+ 1) is the probability of zjt (k) = 1 at the
(m+ 1)th iteration given sjt , i.e.,

γjkt(m+ 1) =
αj
k(m) p

(
sjt ;λk

)
M∑
k=1

αj
k(m) p

(
sjt ;λk

) , (4)

where αj
k(m) denotes the value of αk in the jth segment at

the mth iteration. We formulate the Q function as:

Q
(

Ψ,Ψ(m)
)

=

T∑
t=1

M∑
k=1

γjkt(m)
[
logαj

k + log p
(
sjt ;λk

)]
,

where Ψ = {α, λ} and Ψ(m) = {α(m), λ}. The parameters
λ are fixed, and estimated a priori for individual instruments.
The update for the parameters α is given by:

αj
k(m+ 1) =

1

T

T∑
t=1

γjkt(m+ 1). (5)

Figure 2 depicts the estimated α for a 3-polyphony. The
ground truth is established using the relative mixing ratios of
individual instrument signals in the polyphonic signal. It is
observed that the active instruments are accurately estimated.

2.1. Instrument Activity Graph

Let the model-weights obtained on convergence of EM algo-
rithm be denoted as αj∗. Let α be the collection of these
model-weights obtained for all segments, 1 ≤ j ≤ J i.e.,
α ,

[
α1∗, α2∗, . . . , αJ∗] and α ∈ RM×J . We refer to a

graphical display of α as “Instrument Activity Graph (IAG)”.
The y-axis of the plot indicate the M instrument indices and
x-axis denotes time. An example IAG is shown in Figure 3.
One can get an idea of the instruments active at any given time
using an IAG. The specifics related to obtaining α (and hence
IAG), are detailed in Section (3).
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(a) Ground truth indicating instrument activity.
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(b) Estimated IAG using the proposed algorithm. Nw = 5 s and
Nsh = 100ms.

Fig. 3: An instrument activity graph for a polyphonic signal
with varying number of instruments across time. α values are
indicated by inverted grey scale.

Category String Wind Key
Instruments Guitar, Harp Clarinet

chosen Mandolin, Violin Flute, Trombone Piano

Table 1: Different categories of instruments chosen.

3. EXPERIMENTAL RESULTS

The performance of the proposed approach is evaluated on
RWC database [13]. We choose 8 instruments from three cat-
egories as shown in Table 1.

Twelve dimensional Mel-frequency cepstral co-efficients
(MFCCs) are used as feature vectors after silence removal.
A closer examination of the chosen instruments reveals that
a minimum of 200 ms captures the attack-sustain period.
Hence, a frame length of 250 ms and a frame shift of 10 ms
is used for obtaining the MFCCs using HTK [16]. An analysis
segment, Sj , constitutes T consecutive frames.

3.1. tMMs as Instrument models

It is our belief that speech and music are similar in many
aspects and hence some of the advances in speech analysis
can be borrowed to music analysis and vice-versa. In [17],
we have shown that tMMs are in general better models than
GMMs not just in terms of parsimony, but also in terms of
accurate functional approximation. In particular, we have
shown that for speaker recognition task, tMMs outperform
GMMs. Therefore, we choose tMMs as instrument models.

The suitability of tMMs as instrument models is verified
based on its performance on instrument recognition task in
monophonic data. In the training phase, a 32−component
tMM is used to model each instrument. The parameters are
learnt using an EM algorithm for tMM [18]. For each instru-
ment, monophonic training data of at least 5 minutes is used.
In the testing phase, the detected instrument in the mono-
phonic test signal, corresponds to the instrument model yield-
ing highest likelihood of the data, given the model. For each
instrument, a set of 20 randomly selected files, excluding the

training set, is chosen for testing. Test data length is around
10 s. Care has been taken to ensure that the test data and train-
ing data of any given instrument differ in either the artist or
the instrument manufacturer [13]. Table 2 shows the confu-
sion matrix for the solo instrument recognition task. (i, j)th

entry in this matrix denotes the percentage of files containing
the ith instrument and detected as the jth instrument.

C F T P G H M V
Clarinet 96 0 0 4 0 0 0 0

Flute 0 100 0 0 0 0 0 0
Trombone 0 0 100 0 0 0 0 0

Piano 0 0 0 90 10 0 0 0
Guitar 0 0 0 0 100 0 0 0
Harp 0 0 0 0 0 100 0 0

Mandolin 0 0 0 0 0 10 100 0
Violin 0 0 0 0 0 0 0 100

Table 2: Confusion matrix of solo instrument recognition us-
ing t-MM models on RWC dataset.

The diagonal entries of the confusion matrix are domi-
nant indicating the ability of the detection approach to yield
more true positives. The confusion across instrument cate-
gories is almost negligible. The above experiment shows that
the choice of feature vectors and instrument models is able
to detect and differentiate between the chosen instruments.
The choice of the feature set and the instrument models for a
finer recognition performance is beyond the scope of this pa-
per. Therefore, we use the above feature set and instruments
models in the proposed approach for analyzing polyphonic
signals.

3.2. Multi-Instrument Recognition in Polyphonic Music

Multi-instrument polyphonic test signals are created by lin-
early adding the amplitude normalized monophonic test data
of different instruments. Polyphonic signals containing two to
five instruments are created. A K−polyphony test set com-
prises all

(
M
K

)
combination of instruments. Each polyphony

contains at least 15000 segments. The performance of the
algorithm in detecting all instruments in each segment, sj ,
is measured using F-ratio [2]. An instrument Ik in jth seg-
ment is considered detected if αj

k > ε, where the threshold
ε ∈ (0, 1). The F-ratio is defined as, F , 2RP

R+P , where R and
P are recall and precision of detecting the instruments in the
multi-instrument polyphony.

The EM algorithm in the proposed approach requires an
initial estimate i.e., αj(0). Since the number of instruments
in the given polyphony is generally not known a priori, all the
M−instrument models are assumed to be equally probable
and hence we initialize αj

k(0) = 1
M ;∀ 1 ≤ k ≤ M ;∀ 1 ≤

j ≤ J .
In general, performance of stochastic models improves

with more data. However, for online instrument recognition
applications, real time processing on short data segments be-
comes imperative. Hence, there in an inherent trade-off be-
tween performance and segment length. Figure 4 shows the
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Fig. 4: (Color Online): PR curves for different segment
lengths (Nw) and polyphony. Nsh = 100 ms.
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Fig. 5: Mean and s.d. of F-ratios for different polyphony.
Nw = 5 s, Nsh = 100 ms and ε = 0.1

performance of the proposed approach for varying segment
lengths (Nw) and different polyphony using Precision Recall
(PR) curves.

For an ideal detection system, the operating point on the
PR curve is at (1, 1). For a practical detection system, the
point on the PR curve closest to (1, 1) is considered an oper-
ating point, as it gives a good trade-off between precision and
recall. For a given polyphony, it is observed that PR curves
corresponding to higher Nw dominate those corresponding to
lower ones. Thus, there is an inherent trade-off between Nw

and performance. Note that the PR curves corresponding to
Nw = 5 s and 10 s are close to each other across different
polyphonies. Although Nw = 50 s offers the best perfor-
mance, we chooseNw = 5 s for a good trade-off. The thresh-
old (ε) corresponding to the operating point is found to be 0.1.
Figure 5 shows mean and s.d. obtained by accumulating F-
ratios of each K−Polyphony, computed over

(
M
K

)
combina-

tions of instruments. Acceptable degradation of performance
can be observed with increasing number of instruments in the
polyphony.

3.3. Computational Time

The proposed approach is implemented on a Intel(R) Core
(TM) 2 Duo CPU T6600 @2.20 GHz and 4 GB RAM. From
Figure 1a, the major computational blocks are feature extrac-
tion and LV analysis. Polyphonic music signal analysis is
done on Nw = 5 s and Nsh = 100 ms. The overall com-
putational time of the algorithm for each segment, is found to

be ∼ 85 ms of which, the LV analysis block consumes about
99% of the time. Thus the processing time of the proposed
algorithm is less than the data segment rate Nsh.

4. DISCUSSION

We propose a generic latent variable framework for multi-
instrument recognition using monophonic instrument models.
tMMs are used to model individual instruments from their
monophonic signals. The polyphonic signal is modeled as a
linear combination of LV conditioned individual instrument
models. We propose to estimate the LV weights from the
polyphonic data using an EM algorithm. Experimental results
on eight instruments from RWC database, show monophonic
instrument recognition accuracy of 98% indicating the effi-
cacy of tMMs as instrument models. Two to five instrument
polyphony are analyzed using PR curves for varying segment
lengths. The proposed approach has an average F-ratio of
0.75 for a segment length Nw = 5 s. With the choice of
Nw = 5 s, it is shown in Section (3.3) that the proposed
algorithm has a processing time of ∼ 85 ms. Since the pro-
cessing time for each segment is less than Nsh = 100 ms,
the proposed approach can be used for online applications.
Instrument Activity Graph (IAG), a graphical display of the
LV weights obtained, shows the activity of each of the instru-
ments considered, over time, for a given polyphony.

In any LV decomposition, the definition of latent vari-
able, choice of features, and instrument models depend on
what hidden aspects of the mixture signal one wishes to un-
ravel. Other LV decompositions [11, 19] can be seen as a
particular case of Equation (1). In particular, the decompo-
sition in [19–21] is obtained by choosing spectral vectors as
features, normalized magnitude spectrogram as the mixture
signal model and a collection of multinomial distributions
in frequency (given the latent variable) as individual source
models. In applications demanding signal reconstruction, for
instance source separation, the choice of spectrogram as sig-
nal model becomes attractive. This is because, spectrogram
viewed as normalized histogram, admits decomposition based
on non-parametric source models, and signal reconstruction
from such a decomposition, although non-trivial, is possi-
ble [22]. The choice of spectrogram as a signal model can
also be seen in the application of music transcription [11],
wherein multiple F0 estimation is essential. Our proposed
formulation is generic in the sense that, the type of features
or instrument-models are not restrictive. The individual in-
strument models p

(
sjt ;λk

)
can be different for different k.

Since we are not updating the model parameters in the EM
algorithm, it would suffice if these models have a computable
expression. Thus, the framework can accommodate hetero-
geneous models (different models for different instruments)
without any modification to the model-weights update equa-
tion. This is quite relevant in case of music as melody-based
instruments and rhythm-based instruments may require dif-
ferent models.
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