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ABSTRACT

In our previous work, we formulated multiple audio sequence

alignment in a probabilistic framework [1]. Here, we extend

the model for multi resolution alignment and focus on pair-

wise cases. We defined a similarity based approach for bi-

nary feature sequences and integrate it into a new generative

model. We modify the model for multi resolution case and the

matching is achieved with a Sequential Monte Carlo Sampler

(SMCS) which uses low resolution models as bridge distribu-

tions. The simulation results on real data sets suggest that our

method is very robust and efficient under very noisy condi-

tions with proper choices of model parameters.

Index Terms— Audio alignment, Audio matching, Prob-

abilistic Model,Sequential Monte Carlo Sampler

1. INTRODUCTION

Audio alignment or fingerprinting is defined in the literature

as matching an unknown audio signal to a large dataset. Some

popular use cases are identifying the metadata of an unknown

audio signal such as song title or artist name and monitoring

radio broadcasts for copyright purposes. There are several

audio fingerprinting methodologies with high matching per-

formance [2]-[7]. In [1], we viewed the common audio align-

ment from a different angle where there are several unsyn-

chronised recordings i.e., each microphone starts and stops

recording at different times independent of each other, and

the aim is to align these sequences on a generic time line ac-

cording to each other. The difficulty of the problem rises from

the facts that the sequences may or may not overlap, none of

the sequences have to cover all the timeline and there is no

clean original source database.

Alignment, from this point of view, is applicable to sev-

eral other problems such as synchronisation of video clips

with no offsets [8] or restoration of an audio scene from its
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noisy recordings. A possible application is restoring a record-

ing of concert from the recordings of the audience [9]. Simi-

lar approaches exist in different fields such as genetics where

DNA strands are assembled from shorter sequences [10] and

image stiching where a panoramic view is assembled from

multiple partially overlapping images [11].

There are two important performance criteria for the

alignment problem; it should be fast and robust. For both

purposes, the alignment is usually applied in feature space

rather than on raw audio data. The majority of the frame-

work rely on spectral representation of the signal such as

local peaks on the magnitude of short-time Fourier Trans-

form (STFT) [2],[8], thresholded energy of first difference

through time and frequency in the STFT [3], mel-frequency

ceptstral coefficients (MFCC) [4],positive spectral difference

[5],[12] and constant Q transform (CQT) [6].

Most state of the art methods employ hashing algorithms

that reduces the amount of data, and then apply search strate-

gies that works on all possible pairs [2],[3],[6],[8]. In [1],

we proposed a model based approach where we are able to

match an unknown sequence against a group of sequences

with known relative shifts. In this work, we extend the model

for multi resolution alignment and focus on pairwise cases.

The pairwise alignment problem can also be tackled with

deterministic approaches such as cross-correlation or any

similarity based approach but it is not always clear how to

apply these methods when the sequences do not overlap or

there is some missing data. In this work, we used a similarity

measure based on Hamming distance for binary sequences

and defined a generative model following [1] for which the

posterior is similar to this measure. For the search strategy,

we propose a SMC sampler based method to compute the op-

timum alignment without explicitly evaluating score function

for all alignments. The main idea is to use low resolution

bridge distributions that guides samples through the modes

of target posterior distribution. The model is slightly mod-

ified for the multi resolution case. Our main motivation is

to extend the SMCS based multi resolution model to mul-

tiple alignment cases and this work is an initial phase that
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considers only pairwise scenarios.

2. PROPOSED MODEL

In this section, we summarize the model given in [1] and show

how to modify it such that it is applicable to low resolution

signals. In Figure 1, a toy example is given to illustrate the

model. The features are positive coefficients and color of each

coefficient depends on its value. The main idea of the model

is; Properly aligned feature sequences are noisy realizations

or functions of a common but unobserved feature sequence

[1]. The unobserved feature sequence is denoted by λτ where

τ = 1 . . . T is a global time frame index. In this example,

two sequences are observed which are denoted by xk , where

k is the sequence index. The length of each observation is

denoted by Nk and n is a local time index. The alignment

variable for each sequence is denoted by rk. Here, the lengths

of the sequences are N1 = 6, N2 = 8 and their starting points

are r1 = 3, r2 = 5. In this scenario, the sequences overlap

with each other at several points, i.e., x1,2 and x2,0 coincide

at global time τ = 5.

Fig. 1. Toy example

It can be observed from the Figure 1 that x1,2 and x2,0

values are close to each other since they are observations of a

common source λ5. Intuitively, the overlapping parts of such

sequences should be similar to each other at the exact align-

ment point. Therefore by applying such a similarity measure,

one can find the best alignment between two sequences. In

binary case, a bitwise comparison in the overlapping parts of

the signals can be used as a similarity measure. In Figure 2,

an example of such a situation is shown. If two coefficients of

sources x1 and x2 i.e.,x1,1,1 and x2,0,1 that are aligned to the

time τ = 1, are equal to each other then they are counted as 1,

otherwise they are not counted. The ratio of this count to the

total number of overlapping bits acts as a similarity measure

since at the exact alignment, this ratio should be highest. In

this scenario, there are 4 overlapping bits and 3 of them are

equal to each other therefore the ratio is computed as 3/4. This

similarity measure acts as a strong scoring function even in

low SNR cases. As mentioned before, following the template

generative model in [1], we propose the following generative

Fig. 2. Similarity of two sequences

τ = 1 2 3 4 5

r1 = 2

r2 = 3

x1,0,1 = 1

x1,0,2 = 0
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x2,0,1 = 1
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x2,2,2 = 1

Fig. 3. Graphical Model

xk,n,fλτ,f rk

τ = 1 : T n = 0 : Nk − 1 k = 1 : K

f = 1 : F

model for binary sequences;

λτ,f ∼ BE(λτ,f ;αλ)

rk ∼

T
∏

τ=1

π
[rk=τ ]
k,τ

xk,n,f |rk, λτ,f ∼
T
∏

τ=1

P(xk,n,f |rk, λ1:T,f )
[n=τ−rk]

where P(xk,n,f |rk, λ1:T,f ) is a conditional Bernoulli distri-

bution which is defined as,

P(xk,n,f |rk, λ1:T,f ) = (wi,j)
∑

1

i=0

∑
1

j=0
[xk,n,f=i][λτ,f=j]

Here the wi,j is the probability that the λτ,f = j and xk,n,f =
i. f is frequency sub band index. [·] is the indicator function

which is equal to one if the expression inside is true. In this

work, we assumed wi,j = w if i 6= j and wi,j = 1 − w if

i = j, and the parameter of prior, αλ = 0.5. The hidden co-

efficients λτ are assumed to be a-priori independent and each

rk is uniformly distributed. Here, the [n = τ − rk] expression

in the observation model indicates that if xk,n,f is aligned to

time τ , then it only depends on the hidden coefficient λτ,f ,

hence each observation coefficient is conditioned on a dif-

ferent hidden coefficient. The graphical model is shown in

Figure 3.

The aim is to find most likely alignments of observed se-

quences denoted by r∗1:2, which is actually the prime mode of

the joint conditional posterior probability p(r1:2|x1:2,0:Nk−1).
Assuming no prior information, likelihood, posterior and joint

distribution are proportional. Hence, one can use Φ(r1:2) =
p(x1:2,0:Nk−1, r1:2) as a scoring function. By choosing prior

and likelihood distributions as conjugate pairs ,i.e., Gamma-

Inverse Gamma, Bernoulli Bernoulli, analytical derivation of
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Φ(r1:2) is possible by summing over λτ,f . Then the opti-

mum alignment is the one that maximizes the logarithm of

Φ(r1:2), i.e., L(r1:2) = logΦ(r1:2), This formulation can

also be viewed as a Bayesian model selection problem [13].

We are comparing different configurations of r1:2 to find the

’model’ that describes the data best.

In the model as given in [1], each observation coefficient

xk,n,f depends on only one of the hidden coefficients λτ,f ,

if it is aligned to time τ . To obtain lower resolution data,

we modify this idea such that L number of consecutive ob-

servation coefficient depends on one hidden coefficient λτ,f .

To illustrate the idea, the toy example in Figure 1 is also

modified in Figure 4 where L = 2. The length of each se-

quence is halved and as it can be observed the coefficients

x1,4, x1,5, x2,2 and x2,3 are aligned to time τ = 4, hence

they are noisy realizations of λ4. We can also interpret the

second row of each sequence like a new sequence that has

to be exactly aligned with the first row. From this point of

view, there are 4 sequences aligned at time τ = 4. We define

nl = ⌊n
L⌋ where ⌊.⌋ is the floor operation and switch the lo-

cal time index with nl in the generative model which modifies

the model for low resolution case. It is important to mention

that there are other ways to obtain low resolution sequences

rather than modifying the model such as increasing window

size in feature extraction or downsampling before or after fea-

ture extraction. In this work,we just modify the structure of

data without changing the actual resolution.

Fig. 4. Modified Toy Example From Figure 1

The posterior L(r1:2), would be equal for the alignments

where the sequences do not overlap or where the amount of

overlap between sequences is the same. Hence, if we fix the

first sequence to r1 = N2 + 1, then the posterior becomes

one dimensional L(r2) and of length N1 + N2. Note that

L(r2 = 1) accounts for the score of not overlapping. For the

ease of representation, we will use r instead of r2 in the rest

of the paper.

3. SEQUENTIAL MONTE CARLO SAMPLER

In this section, we introduce a SMC sampler based algorithm

that uses low resolution Φ(r) as bridges. Here, the aim is

to find the optimum alignment r∗ without explicitly visiting

all possible alignments. To achieve this, one needs a sam-

pling mechanism that samples from Φ(r) and if some of the

samples would eventually hit the mode of the distribution the

optimum alignment would be found.

SMCS is a popular sampler due to its flexibility in design

and ability to sample from rough and high dimensional den-

sities. It samples from a sequence of distributions, denoted

by γi, which are called intermediate distributions [14]. At

each step, the algorithm samples from the next intermediate

distribution and in the last step, the resulting samples would

be drawn from the target distribution which is Φ(r) in our

case. The main idea behind SMCS is that if the intermedi-

ate distributions in the consecutive steps are close enough to

each other, they would act like a bridge and guide the sam-

ples through modes of the target density. At each step, new

samples r
(i+1)
s are drawn from a forward Markov transition

kernel Ki+1(r
(i+1)
s , r

(i)
s ) where s is the sample index and i is

the dimension index. Then the discrepancy between the sam-

pling distribution and intermediate distribution is corrected

using importance sampling [14]. The weight of each sample

is computed as,

wi(r
1:i
s ) = wi−1(r

1:i−1
s )

Bi−1(r
i
s, r

i−1
s )γi(r

i
s)

Ki(ris, r
i−1
s )γi−1(r

i−1
s )

where Bi−1(r
i
s, r

i−1
s ) is a backward Markov kernel. The

increase in variance of weights indicates that some of the

samples have much higher importance weights than others.

Hence, a resampling stage is applied to get rid off the samples

with small weights and replicate the ones with higher weights.

A common criteria to measure this degeneracy is the effective

sample size (ESS) which is defined as

(

∑S
s=1

(

w
(i)
s

)2
)

−1

[14].

We choose the intermediate distributions as low resolu-

tion posterior distributions denoted by ΦL(r) where L = 2l,
l = 8, 7, · · · , 1. Note that the length of each ΦL/2(r) is twice

the length of one step lower resolution ΦL(r), i.e., length of

Φ64(r) is twice the length of Φ128(r). Hence, we need to de-

sign a forward kernel such that samples are moved from lower

resolution to higher resolution. In SMC sampler framework,

the choice of the forward and backward kernels are flexible

so that any proposal mechanism is possible at any step of the

algorithm, i.e., Ki(.) do not have to be equal to Kj(.).
For the forward kernel, we propose to move samples from

lower resolution (2L) to higher resolution (L) through some

smoothed distributions of ΦL. Defining Q as a smoothing

kernel, one can obtain these distributions by applying Q sev-

eral times to ΦL(.), i.e., QnΦL, Q
n−1ΦL, · · · , QΦL,ΦL. Il-

lustration of the smoothed distributions through each stage
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and movement of a sample is shown in Figure 5. Note that

smoothing kernel is chosen to be sparse so that one does not

need to explicitly compute all values in QnΦL,i.e., compu-

tation of a few values in QnΦL would be enough. We ap-

plied averaging kernel for smoothing purposes and backward

kernel is chosen to be equal to forward kernel in the weight

update.

1000

2000

3000

4000

5000

6000

7000

8000

ΦL/4 Q3ΦL/2 Q2ΦL/2 QΦL/2 ΦL/2 Q3ΦL Q2ΦL QΦL ΦL

Fig. 5. Smoothed Bridge Distribution through each stage

One issue in the design of proposal is that proposal mech-

anism should be different for moving samples between

smooth distributions (QnΦL,Qn−1ΦL) where resolution

stays the same and for moving samples from low resolu-

tion (L) to high resolution (L/2) (ΦL, Q
nΦL/2). In the latter

case, a sample in the (i− 1)’th stage in L resolution approxi-

mately corresponds to r
(i)
s ≈ 2 ∗ r

(i−1)
s − 1 in the i’th stage

in L/2 resolution. Hence, proposed samples at these stages

are chosen around 2 ∗ r
(i−1)
s − 1.

Note that none of the samples represent the case Φ(r = 1)
which is the score for the sequences not overlapping. Sim-

ply by computing this value in the last step of SMC sam-

pler where other samples are also drawn from Φ(r) and com-

pare with the sample of highest score, one can easily decide

whether or not the sequences overlap.

4. RESULTS AND CONCLUSION

In simulations, 20 datasets that include both speech and mu-

sic recordings around 2 hours were used with hand labeled

ground-truth. Each dataset consists of two overlapping or

non-overlapping audio signals of varying length (from 30-

40 seconds to 20-25 minutes), amplitude levels and noise

content. The binary features are extracted by following the

method in [3], which is basically taking the first difference

of STFT on both time and frequency and then applying a

threshold. The STFT resolution is 0.04ms and 32 sub bands

are used.

In SMC sampler framework, intermediate distributions

are usually annealed so that they become more similar [14].

Different annealing strategies are possible. Here, we anneal

the intermediate distributions by adjusting the w parameter.

When w is close to 0.5, the effect of data decreases therefore

sequences could be aligned with less similarity. For lower res-

olution models, we choose smaller values for w and increase

as the resolution increases. One of the major advantages of

the algorithm is that, even if the corresponding alignment of

the prime mode in lower resolutions is a local mode, the SMC

sampler is still able to hit the prime mode in high resolution.

Another implementation issue is that the size of averaging

kernel and/or number of appliance on the current target distri-

butions can change over the steps of SMC sampler according

to the resolution. As the resolution increases, we increase the

number of appliance, hence have more smooth intermediate

distributions for higher resolution steps which is observed to

enhance the performance of the algorithm.

The number of samples used in SMCS is determined

according to the length of ΦL where L is the lowest reso-

lution. For example if the length of the sequences N1 =
6500, N1 = 7000 and we start with a low resolution with

L = 256, the length of sequences become ⌊6500/256⌋ = 25
and ⌊7000/256⌋ = 27 respectively. Then the number of

samples is determined as 25+27-1=51.

The performance of the SMCS depends on the initial

number samples and number of intermediate stages of same

resolution level. By starting with enough number of samples

and choosing proper w parameters for each stage, the SMCS

is able find the ground truth for all data sets. The number of

resolution levels may vary for different datasets, it is chosen

manually such that minimum number of samples in a set is

not below 20 in lowest resolution.

Rather than robustness, the computational efficiency of

multi resolution model over naive computation of Φ(r) can

be illustrated with an example ignoring the effect of smooth-

ing operation. Defining the computation time for Φ(r) for

any sample r as T0, the computation time for the ΦL(r) is

TL = 1
LT0 since the length of each sequence also decreases

to 1/L of it. For each sample ri−1
s , 2 samples are proposed for

ris, hence the number of required computation of smooth dis-

tributionsQnΦL is 2. Assuming there are 4 stages of the same

resolution, the number of required computations is 8 between

each resolution change. For L = 256, the number of increase

in resolution log2 256 is 8. Hence for one sample, the time

elapsed in the end is, 8∗( T0

128 +
T0

64 +
T0

32 + · · ·+T0) = 14.5T0.

Since the number of samples is approximately 1/256 times of

the original lengthN1+N2, the computational time for SMCS

is computed as 14.5
256 ∗ T0 ∗ (N1 + N2) = 0.0566T0 which is

lower compared to computing the Φ(r) for all possible align-

ments, i.e., (N1 + N2) ∗ T0. Hence, it can be concluded that

SMC sampler with multi resolution intermediate distributions

is both robust and computationally efficient and extending the

framework to multiple cases rests as a future work.
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