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ABSTRACT

In this paper, we present a robust on-line algorithm for real-
time audio-to-score alignment based on a delayed decision
and anticipation framework. We employ Segmental Con-
ditional Random Fields and Linear Dynamical System to
model musical performance. The combination of these mod-
els allows an efficient iterative decoding of score position
and tempo. The combined advantages of our approach are
the delayed-decision Viterbi algorithm which utilizes future
information to determine past score position with high reli-
ability, thus improving alignment accuracy, and the fact that
the future position can be anticipated using an adaptively
estimated tempo. Experiments using classical music and jazz
databases demonstrate the validity of our approach.

Index Terms— Audio-to-score alignment, score follow-
ing, real-time, segmental conditional random fields, linear dy-
namical system

1. INTRODUCTION

Real-time audio-to-score alignment involves synchronizing
an audio performance and its symbolic musical score, known
as score following. It can be used in a wide range of real-time
applications, such as the synchronization of live sounds and
automatic accompaniment of human soloists or singers (e.g.,
see [1,2]).

Audio-to-score alignment can be considered as either an
off-line or on-line problem. In off-line cases, global informa-
tion about the input audio signal can be used in the alignment
process. In contrast, in on-line cases, we cannot use future
information about the input signal. For this reason, score fol-
lowing is fundamentally more difficult compared than the off-
line problem.

In both settings, many current approaches use dynamic
programming methods based on Hidden Markov Models
(HMMs) or Dynamic Time Warping (DTW). In the off-line
setting, the most likely alignment can be found using a dy-
namic programming technique, given the entire input audio.
However, the decoding algorithm is off-line, so some approx-
imations are required for on-line cases.

In [3-5], a greedy approximation was applied to Viterbi
algorithm and dynamic programming. In the case of poly-
phonic music, however, the number of estimation errors will
increase. These are caused by uncertainties in pitch and onset,
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which increase in proportion to the complexity of the input
audio. Thus, the greedy solution may not always be suitable.

In contrast to the dynamic programming approach, fil-
tering methods based on state-space models have been pro-
posed [6-8]. Although these allow the simultaneous estima-
tion of score position and tempo, they tend to accumulate er-
rors and fail to recover if they lose their position.

To maintain robustness against polyphonic music signal,
it is helpful to use the tempo for future anticipation. In [9],
Raphael used hybrid graphical models for the score position
and tempo, but this technique only works off-line. In [10],
Cont used duration-focused models consisting of Hidden
Markov/Semi-Markov Models with an explicit tempo model.
Behind the success of this work, the greedy approximation in
the Viterbi algorithm may cause estimation errors with highly
polyphonic signals. In [11], Arzt reported a sophisticated
on-line algorithm, utilizing a forward-backward strategy that
re-computes past-determined forward path, albeit without an
explicit tempo model.

In this work, we introduce a robust on-line algorithm for
polyphonic music signals based on a delayed decision and
anticipation framework. The advantages of our approach are
that a delayed decision approximation for the Viterbi algo-
rithm can find highly reliable past positions utilizing future
information, even in polyphonic cases, and future position
can be anticipated using an adaptively estimated tempo. In
addition, we employ the state-of-the-art, Segmental Condi-
tional Random Fields (SCRFs) proposed in [12] (with a few
modifications) and an explicit tempo model based on Linear
Dynamical System (LDS).

2. SEGMENTAL CONDITIONAL RANDOM FIELDS
OF MUSICAL PERFORMANCE

2.1. Score Alignment Formulation

We first describe the audio-to-score alignment problem in
the off-line situation because score following can be approxi-
mated from its on-line extension.

Given the auditory music signal and its symbolic score,
we address the score alignment problem as the segmentation
of the audio to the chord sequence on the score (Figure 1),
where a chord is a set of concurrent notes on the score. In our
approach, chord transitions are modeled by SCRFs. SCRFs
are an extension of Conditional Random Fields (CRFs) which
Markovian assumption is relaxed to allow a segment-level
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Fig. 1. Audio-to-score alignment as segmentation into a

chord sequence from the feature vectors that are extracted by
the input audio signal.

that is separate from the frame-level. CRFs and SCRFs were
first introduced to audio-to-score alignment by Joder [12,13].
They allow more flexible feature design than conventional
HMMs. In particular, SCRFs can incorporate both frame-
level and segment-level features.

In contrast to Joder’s previous work, we model time-
varying tempo as a continuous process rather than as a dis-
crete process, which is discussed in Section 3. This allows for
an adaptive real-time estimation of tempo. Note that tempo
is not considered here as we simply allow inference using the
Viterbi algorithm.

Let o = {0} be the observation sequence extracted from
the input audio signal, where ¢ is the frame index, and let
q = {qn}n be the segmentation of o, where n is the segment
index. The segment g, = (t5,t%,s,) consists of the start

n'n?

frame ¢; , the end frame ¢}, and the chord label s,,. The
segmentation problem is formulated as
q = arg max p(q|o), (1)

qeQ

where Q is the set of possible segmentations. The conditional
probability of a given observation sequence is defined as

N

U(q1) H V(qn-1,qn) H

n=2 n=1

p(q|0) = qna 7 (2)

1
Z(o)
where N is the number of segments, Z (o) is a normalization
factor, U(qy,, g,—1) are the transition functions, and ®(g,, o)
are the observation functions. Indeed, IV is a random variable.
The most likely segmentation can be found using the Viterbi

algorithm in the off-line setting thanks to the segment-level
Markovian assumption.
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2.2. Observation Functions

For the observation functions, which represent the relation be-
tween observations and chords, we use two acoustic features:
chroma features based on a constant-Q transform to utilize
the pitch content of musical performance , and onset features
based on spectral flux to consider the burst-of-note onset. An
extensive study on acoustic features in score alignment can be
found in [14] and we follow this.

Let oy = {vy, f;} be the observation extracted from the
audio signal, where vy is the chroma vector and f; is the result
of the spectral flux-based onset detection proposed in [15].We
assume that the observation functions can be decomposed as

®(qn,0) = ¢c(gn, 'Ut;“,y:t%)(ba (qn, ft;:tg,)- (3
a) Chroma feature: For each segment, a chroma feature is
calculated as

e

Oeln Vi) = exp{ X0 D (o)

t=ts,

)

where \¢ is a weighting parameter, D¥E(:||-) is the Kullback-
Leibler (KL) divergence, and u,, is a template chroma vector
built from the score for each chord in the same manner as
described in [16].

b) Onset feature: An onset feature is defined as

1
baln, ft;:t;) = eXP{Z A;‘s{ft%,g} + Z N?L‘s{m,h}}’ ®)
g=0 h

where g and h are the indexes of the number of onsets, A%,
(¢ are the parameters, m is the number of onsets detected 1n
the segment, and dy. ., is Kronecker’s delta. Due to the binary
representation of onset, we can take account of intuitive fea-
tures, such as whether the top of a segment is an onset, and
the number of onsets in a segment can be detected.

2.3. Transition Functions

In our model, the duration and transition probabilities of Hid-
den Semi-Markov Models (HSMMs) are incorporated as the
transition functions.

Let d,, =t — t; be the segment duration (s), r,, be the
local tempo (s / beat), which is assumed to be constant in the
segment, and let [,, be the chord length (beat) denoted in the
score. The transition function is

\P(qn—lv%’b) :N(dn§rnln702)psn71,sn7 (6)
where N represents a Gaussian distribution with a mean of
the expected duration r,,/,, and variance of 02 , and p;, _, s,
are the HSMM transition probabilities.

Note that the tempo is assumed to be constant here for
allowing inference using the Viterbi algorithm, but it is esti-
mated adaptively during the alignment process and controls
the transition functions dynamically.



3. LINEAR DYNAMICAL SYSTEM FOR TEMPO
FLUCTUATION

To anticipate the future score position, we introduce a simple
tempo model based on LDS, which is similar to an existing
tempo model [9]. The tempo can fluctuate during a human
performance, but, in general, it does not change considerably
over a short period of time. Here, we assume that tempo can
be constant locally. Thus, the tempo model is defined as

Tn = Tpn—1+ Wy, (7)
dn = rnln + Un, (8)

where
wy, ~ N(0,Q), v, ~N(0,R), 9)

for variance parameters ) and R. Equations (7) and (8) rep-
resent local tempo fluctuation and the observation process at
inter-onset-intervals (IOI), respectively.

The simple linear model allows an efficient real-time de-
coding using a Kalman filter, which consists of prediction
and correction steps, given the result of chord segmentation,
which is the coupled sequence of I0I and the chord length.

4. DECODING ALGORITHM

4.1. On-line Approximation

Time-varying tempo can be estimated using a Kalman filter in
an on-line manner. However, in our SCRFs, the most likely
segmentation can be found using the Viterbi algorithm given
the entire input audio. In score following, the input audio
is given sequentially, thus we need some on-line approxima-
tions.

In [3-5], a greedy approximation that finds the most prob-
able current score position is applied. However, it may cause
estimation errors, particularly in polyphonic cases. To avoid
this problem, we use a delayed-decision Viterbi algorithm
for an on-line approximation that finds the most probable a-
frame past-score position. Due to the utilization of future in-
formation, the algorithm can estimate a highly reliable score
position. Although the idea is similar to [11], we use a back-
ward strategy in the Viterbi algorithm and future anticipation
from our explicit tempo model, as described in Section 3.

4.2. Delayed Decision and Future Anticipation

We now describe our future anticipation method for the
score position. Let {81,...,8t—q,...,S:} be the result of
chord segmentation at frame ¢, {7y ',..., 7, ...,7 '}
be the reciprocal of the tempo estimation (beats / s), and
{b1,...,bt—qa,...,b:} be the sequence of score positions
(beats) corresponding to the estimated chord sequence. The
current or future score position is anticipated as

t
by = bi—q +/ o Ldr. (10)
t—a

Here, if we assume that tempo is constant from ¢ — « to ¢, the
above equation can be approximated as

1)

i)t:btfa—Ff't_l (6%

—at-
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The delay time « is the important parameter in our decod-
ing algorithm. However, the determination of this parameter
is not straightforward. We test various values in our experi-
ments.

Our score following algorithm based on this delayed de-
cision and anticipation framework is summarized below. The
algorithm is repeated for each time frame.

Step 1: Chord segmentation using a delayed-decision Viterbi
algorithm for the input observation sequence

Step 2: Tempo estimation using a Kalman filter of the chord
segmentation result

Step 3: Future anticipation using the results of Step 1 and
Step 2.

5. EXPERIMENTS

5.1. Experimental Settings

We evaluate the robustness of our delayed decision and an-
ticipation algorithm for polyphonic music signals using two
datasets. The first contains 60 classical pieces with perfectly
aligned MIDI data from the MAPS database [17]. These
recordings are real-data played on a Disklavier piano (an
acoustic piano equipped with MIDI input and output inter-
faces), which do not contain any tempo changes but are highly
polyphonic. The second dataset consists of 50 pieces from
the RWC Jazz database [18]. In contrast to MAPS, these
recordings contain many tempo changes. Almost all of the
recordings consist of multiple instruments including percus-
sion. The ground truth is given by manually aligned MIDI
files. For practical reasons, we only use these MIDI files due
to the manual annotations might have a slight gap compared
to the ground truth. To evaluate our algorithm correctly, we
prepare perfectly aligned recordings by synthesizing these
MIDI files with a YAMAHA XG WDM SoftSynthesizer, re-
taining all tempo changes. All recordings are re-sampled to
44.1 kHz monaural and analyzed with a 10 ms hop-size.

The algorithm is evaluated using three statistical mea-
sures: the Precision, Recall, and F-measure of the note onset
recognition (in the same as in [15]). In these experiments,
we report onsets if b, reaches theoretical onset positions in
the score. The onsets detected within a tolerance threshold
corresponding to the reference onset time are accepted. The
error tolerance is variously set to 100, 300 and 500 ms.

Model parameters are listed in Table 1. Note that we
do not consider structural changes in music, such as skips
of score events in these experiments. These can easily be
adapted with a few modifications to the transition probabil-
ities, as shown in [12], even using the on-line settings.

5.2. Results

Table 2 shows the results of onset detection for two databases
with various delay times. In terms of the F-measure, the small
delay time of 0.5 s obtained the highest result for the 100 ms
tolerance threshold, showing an increase of over 30-% in both
databases compared to no delay time. With a tolerance of 300



Table 2. Onset detection results (%) for 60 pieces from the MAPS database (top) and 50 pieces from the RWC Jazz database

(bottom). The delay time is set to 0.0, 0.5, 1.0, and 1.5 s.

MAPS database

measure Precision Recall F-measure
« 00 05s 10s 15s| 00 05s 10s 15s| 0.0 05s 1.0s 1.5s
100ms || 51.6 789 73.1 656|429 787 733 659|469 788 732 658
300ms || 89.0 91.8 92.7 923 | 73.1 915 93.0 927|803 917 928 925
500ms || 94.6 939 950 953 | 775 935 952 956|852 937 951 954

RWC Jazz data

measure Precision Recall F-measure
« 00 05s 10s 15s| 00 05s 10s 15s| 0.0 05s 1.0s 1.5s
100ms || 37.2 604 547 476|254 60.0 548 481 | 302 60.2 547 478
300ms || 747 79.1 803 79.1 | 494 782 803 80.0 |595 787 803 79.6
500ms || 85.0 84.0 858 859 |554 831 859 869|670 835 858 864

Table 1. Model parameters for Segmental Conditional Ran-
dom Fields and Linear Dynamical System.

SCREF parameters
Chroma feature weight
Onset feature weight (1/3)
Onset feature weight (2/3)
Onset feature weight (3/3)

A =0.1
Af =—0.3,2f =—-0.01
ne = —0.3,uf =—-0.01
puy = —0.15h (h > 2)
pij=1lonlyifj=di+1
otherwise 0
% =0.18 (s?)

Transition probabilities

Duration variance

LDS parameters
Q@ = 0.08 (s*/beat?)
R=0.3(?

Tempo variance
Inter-Onset-Interval variance

ms, which is based on the Real-time Audio to Score alignment
task in the Music Information Retrieval Evaluation eXchange
(MIREX) contest [19], the results show an improvement of
11-% and 19-% in F-measure for the MAPS and RWC Jazz
database, respectively.

The smaller the tolerance threshold, the greater is the de-
lay time to obtain the results, which indicates that the delay
time should be set according to the requirement of its appli-
cation.

A large delay time (over 1.0 s) caused the results to
worsen in the small tolerance of 100 ms. This situation
arises from the trade-off between delayed decision and future
anticipation accuracy. We might think that the large delay
time, would enable higher accuracy in results, because of the
availability of more future information about the input signal.
However, the large delay time may cause anticipation errors.
There are two reasons for this: the effect of tempo estimation
errors, and the assumption that the tempo within the delay
time is the same as the current tempo. The tempo estimation
results are sometimes not reliable in these experiments. The
accuracy is about 60-% with 4-% tolerance in both databases.
Even if there are slight errors in the estimated tempo, the
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anticipation errors would increase in proportion to the delay
time. However, it is worth mentioning that the results with
small delay times obtained accurate results.

In the RWC Jazz database, our method obtained less ac-
curate results than with the MAPS database. This is because
the RWC recordings have more complexity than those in the
MAPS, as mentioned in Section 5.1.

Using both databases, the Recall tends to be lower than
the Precision with no delay time, particularly so for RWC
Jazz. This can be explained by the fact that highly polyphonic
music signals sometimes cause instabilities in the algorithm.
However, the Recall is particularly improved using our de-
layed decision and anticipation algorithm. These results show
the high robustness of our method for highly polyphonic mu-
sic signals.

6. CONCLUSION

In this paper, we presented a robust on-line score following
algorithm for polyphonic music signals based on a delayed
decision and anticipation framework. The key features are
our delayed-decision Viterbi algorithm, which finds highly
reliable past positions utilizing future information, and that
the future position can be anticipated using an adaptively es-
timated tempo thanks to our explicit tempo model.

Experimental results on polyphonic music databases
showed significant improvements in alignment accuracy, even
for highly polyphonic cases including tempo changes. It is
worth mentioning that our delayed decision and anticipation
framework can be used in existing dynamic programming-
based score followers with an explicit tempo model. In future
work, we intend to determine the delay time adaptively during
a musical performance by considering the trade-off between
the delayed decision and anticipation accuracy.
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