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ABSTRACT

In this paper we use a Non-negative Matrix Factorization
(NMF) based approach to analyze the strokes of the mri-
dangam, a South Indian hand drum, in terms of the normal
modes of the instrument. Using NMF, a dictionary of spectral
basis vectors are first created for each of the modes of the
mridangam. The composition of the strokes are then studied
by projecting them along the direction of the modes using
NMF. We then extend this knowledge of each stroke in terms
of its basic modes to transcribe audio recordings. Hidden
Markov Models are adopted to learn the modal activations for
each of the strokes of the mridangam, yielding up to 88.40%
accuracy during transcription.

Index Terms— Modal Analysis, Mridangam, automatic
transcription, Non-negative Matrix Factorization, Hidden
Markov models

1. INTRODUCTION

The mridangam is the primary percussion accompaniment in-
strument in carnatic music, a sub-genre of Indian classical
music. The mridangam, along with percussive instruments
like the tabla and congos, falls under the rare category of
pitched percussive instruments. Unlike the western drums
which cannot produce harmonics, pitched percussive instru-
ments like the mridangam have significant harmonic proper-
ties [1, 2]. There have been numerous efforts to analyze and
characterize percussion instruments. However, the focus has
been mainly on unpitched percussion instruments, mostly in
the context of Western music or for isolated percussion timbre
recognition [3, 4, 5, 6].

Recently there have been some efforts to study pitched
percussive instruments, especially the tabla [7, 8], a variant of
the mridangam. Given that the tabla can produce a number
of strokes with unique timbre, both [7] and [8] study the task
of automatic transcription of tabla performances. Both works
address the task of capturing timbre and building classifiers to
transcribe strokes by leveraging timbre.
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The mridangam is quite different from the tabla in that, the
mridangam is a single body instrument with two membranes
(one producing treble sounds while the other producing bass
sounds) as opposed to the tabla, which consists of two inde-
pendent bodies. C.V. Raman, in his work on Indian musical
drums [1], discusses some of the unique traits of the mridan-
gam as a harmonic percussive instrument. He describes some
of the structural similarities between the mridangam and tabla
but at the same time highlights some of the major differences
in their acoustic properties. He also illustrates the modes of
the mridangam using sand figures to reveal the basic physical
and acoustic characteristics of the instrument.

In this paper, we extend Raman’s modal analysis to study
the strokes produced by the mridangam. We propose a Non-
negative Matrix Factorization (NMF) based approach to ana-
lyze the strokes of the mridangam in terms of the basic modes
as described in [1]. We first create a dictionary of basis vec-
tors representing the fundamental modes of the mridangam
using NMF. Then we study the modal activations for each
stroke by projecting the strokes along the dictionary basis
vectors using NMF. We then extend this knowledge of the
decomposition of strokes into basic modes to transcribe au-
dio recordings by a professional mridangam artist. Hidden
Markov Models (HMM) are adopted to learn the modal activ-
ities for each of the strokes.

The organization of the paper is as follows. Section 2
gives a brief introduction to the mridangam followed by a
preliminary description of the strokes that can be produced
by the instrument. Section 3 describes the process of build-
ing the modal dictionary using NMF. Modal analysis of the
strokes is also performed in this section. The relevance of
NMF for identifying strokes of the mridangam is illustrated
using a few examples. In section 4, the task of transcription
using NMF along with HMMs is addressed. Section 5 details
the results of the methods proposed for the task of transcrip-
tion. The paper is summarized and concluded in section 6.

2. INTRODUCTION TO THE MRIDANGAM

The mridangam has been noted in manuscripts dated as far
back as 200 B.C. and has evolved over time to be the most
prominent percussion instrument used in South Indian classi-
cal music [9]. The mridangam has a tube-like structure made
from jack fruit tree wood covered on both ends by two differ-

181978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



ent membranes. Unlike the western drums which cannot pro-
duce harmonics due their uniform circular membranes [10],
the mridangam is loaded at the center of the treble membrane
(valanthalai) resulting in significant harmonic properties with
all overtones being almost integer ratios of each other[1, 2].
The bass membrane (thoppi) is loaded at the time of perfor-
mance, increasing the density of the membrane, propagating
a bass like sound [1]. Figure 1 depicts a technical draft as well
as an image of a mridangam, illustrating the top, bottom and
cross-sectional/body views of the instrument.

(a) Technical Draft (b) Three Views

Fig. 1: (a) Technical draft of treble (top) and bass (bottom) mem-
branes of mridangam. (b) Body (top), bass membrane (bottom left),
and treble membrane (bottome right) of the mridangam

The two membranes of the mridangam produce many
different timbres. Many of these sounds have been named,
forming a vocabulary of timbres. Mridangam sounds can
be roughly classified into the following three major sound
groups:

1. Ringing string-like tones played on the treble mem-
brane. Dhin, cha and bheem1 are examples. These
tones are characterized by a distinct pitch, sharp attack
and long sustain.

2. Flat, closed, crisp sounds. Thi (also referred to as ki
or ka), ta and num are played on the treble membrane
and tha is played on the bass membrane. These tones
are characterized by an indiscernable pitch, sharp at-
tack and almost immediate decay.

3. Resonant strokes are also played on the bass membrane
(thom). This tone is not associated with a specific pitch
and is characterized by a sharp attack and a long sus-
tain.

The strokes mentioned above cover all possible single
handed syllables that can be played on the mridangam. Com-
posite strokes (played with both hands) are two strokes played
simultaneously: tham (num + thom) and dheem (dhin + thom).

3. MODAL ANALYSIS OF MRIDANGAM STROKES
USING NMF

In [1], Raman hypothesizes the mridangam to be a harmonic
drum, whose modes can be excited in isolation, analogous to

1The name of this stroke varies between different schools of mridangam

the harmonic modes of a stretched string which can be ex-
cited by plucking at its nodal points. He then describes ways
to excite the five modes of treble membrane in isolation by
striking the instrument while placing his fingers appropriately
at points of nodal chords of the circular membrane. Finally,
he validates the modes using sand figures.

Our first experiment was to replicate Raman’s approach
to the modal analysis of the treble membrane of the mridan-
gam. Recordings were made in a semi-anechoic recording
studio using Shure SM-58 microphones and an H4n ZOOM
recorder at 44100 Hz. The modes were excited individually
by following Raman’s finger placements from the sand fig-
ures in his work. The fifth mode, which has no image in his
paper, was excited by following his written descriptions. Just
as it was hard for Raman to obtain good sand figures because
of the short duration of the fifth tone, it was also tough for
us to obtain a proper recording of that mode. Therefore, the
fifth mode is not used in the following analysis. Each record-
ing was cropped to capture only the moment after the drum
was struck and the respective mode excited. We hypothesize
that these modes are the basic sound units that can define any
strokes played on the treble and bass membrane of the mri-
dangam. We assume that strokes played on the bass mem-
brane will excite the treble membrane modes because of the
coupling between the two membranes. In order to test these
assumptions, we propose a Non Negative Matrix Factoriza-
tion (NMF) technique.

The methodology to study spectral profiles of harmon-
ically static signals using NMF was first introduced by
Smaragdis and Brown [11]. Various adaptations of NMF
[12, 13, 14] have then been developed for the purpose of
polyphonic music transcription. NMF is a technique using
which a non-negative matrix X can be decomposed into two
non-negative matrix factors B and Y such that

X ≈ BY (1)

Given X is of dimension m× t, then B and Y are of dimen-
sions m × n and n × t respectively. Generally n < t. This
implies that xi, the ith column of X , can be represented as a
linear combination of basis vectors – the columns of B

xi =

n∑

j=1

yjibj (2)

where yj,i, j = 1, · · · .n, representing the ith column of Y ,
are weights estimated for the linear combination of columns
of B. There are numerous algorithms to estimate B and Y ,
depending on the metric used to quantify the approximation
in equation 1. We use the popular euclidean measure and mul-
tiplicative update rules proposed in [15] to iteratively estimate
B and Y .

In the context of this work, matrix X represents the spec-
trogram of an audio signal, divided into t frames. xi repre-
sents the magnitude spectrum vector of frame i and bj , j =
1, · · · , n are spectral basis vectors that best describe the main
components of X . We propose using the NMF technique in a
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two-step procedure to perform modal analysis of the strokes
of the mridangam.

1. Creating a dictionary of the modes: Let Xi represent
the spectrogram of the ith mode recorded. An FFT of
order m = 2048 and a hop size of 10ms was used to
compute the spectrogram. Matrix factors Bi and Yi are
then iteratively estimated with ni = 1, implying that
the number of columns of Bi = 1. This implies that
we are forcing a single spectral vector Bi to represent
the main elements of Xi. A dictionary matrix D =
[B1 B2 B3 B4] of dimension m × 4 is then created.
The columns of D concisely represent the 4 recorded
modes.

2. Project strokes in the direction of the modes: For this
purpose, each stroke on the treble head of the instru-
ment was played in isolation by a professional artist
and recorded. Let X now represent the spectrogram
for the stroke S (keeping the FFT order and hop size
the same). B is initialized by the dictionary D created
in step 1. Using multiplicative update rules, Y is iter-
atively estimated while B is kept constant. If X is of
dimension m × t and given that B = D is of dimen-
sion m× 4, Y will be of dimension 4× t. Each of the
4 rows of Y illustrate the strength and temporal struc-
ture of the activation of the respective modes from the
point of onset until the complete decay of the stroke.
We shall refer to B as the basis matrix and Y as the
activation matrix.

The waveform, spectrogram and the modal activations for
each of the strokes played on the treble head, can be seen in
Figure 2. The four rows below the spectrogram are the rows
of the activation matrix. The strokes recorded in isolation
are displayed adjacent to each other in Figure 2, in order to
compare their modal activations.

The stroke bheem is an open stroke smartly struck with
the pointer finger at the center of the membrane, causing a
ringing sound. Hence the first mode which is an open mode
gets excited with a long sustain (Figure 2) while the other ba-
sis vectors are completely suppressed. The stroke ta is played
in the same spot but is more heavily struck. It is a closed
stroke, therefore the first mode appears damped in Figure 2
for ta when compared to the stroke Bheem. Since it is a flat
sounding stroke with no audible pitch, the excitation is also
spread across the other basis vectors.

The stroke thi is actually described as one way to excite
the first mode in Raman’s work. It is claimed in [1] that
this approach of modal excitation causes overtones. Figure
2 shows that the first mode is dominant for the stroke thi with
third harmonic also excited validating Raman’s claim about
the existence of overtones.

The stroke Cha is struck across the nodal diameter of the
instrument, and therefore corresponds to the configuration of
the second mode of excitement from [1]. Figure 2 confirms

this by depicting the second mode as being dominant with the
first mode also partially excited. The stroke dhin is played
with one hand but is similar to the two-handed configuration
Raman uses to excite the second mode. As can be seen in
Figure 2, the first mode is initially activated but is followed by
the activation of the second mode, which has a significantly
slower decay rate than the first.

The stroke num is a closed, flat stroke struck outside the
black circle of instrument. Because the stroke is played across
multiple nodal lines, it is logical that the second mode, which
vibrates to the left and right of any diameter of the membrane,
should definitely be suppressed with other modes active as
confirmed by the modal activations under the stroke num in
Figure 2.

Tha and thom are played on the bass membrane of the
mridangam. However, because of the coupled nature of the
instrument, modes on the treble membrane are activated. This
is something Raman does not discuss but is validated by the
modal activations in Figure 2. Since the treble membrane is
open when the strokes on the bass membrane are played, the
first mode (open mode) should definitely be excited for both
the strokes as confirmed by Figure 2. Furthermore, since tha
is a closed note, and thom produces a bass sound, tha activates
the higher harmonics of instrument as shown in the figure.

Fig. 2: Waveform (top) and spectral images (middle) of each stroke
of the mridangam and their respective modal activations (bottom)

4. TRANSCRIBING STROKES USING NMF AND
HMMS

From the analysis in Section 3, it is evident that every stroke,
when played in isolation, has distinct modal excitations. This
implies that the activations of the modes can be used to deter-
mine the identity of the stroke played. To test this hypothesis,
two solo performances were recorded by a professional mri-
dangam artist using two instruments tuned to two keys. The
modes for each instrument were also recorded as previously
described. The solos were then cropped into commonly iden-
tifiable phrases (a logical set of strokes) to form two databases
for transcription. The instrument tuned to D# consisted of 134
phrases and the instrument tuned to E had 114 phrases. The
databases consisted of strokes played individually on both the
bass and treble membranes, as well as composite strokes. We
also recorded an open mode for the bass membrane by par-
alleling Raman’s configuration for exciting the open mode
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Table 1: Stroke Confusion Matrix

Strokes
4 modes 5 modes

Bheem Cha Dheem Dhin Num Ta Tha Tham Thi Thom Bheem Cha Dheem Dhin Num Ta Tha Tham Thi Thom
Bheem 30 0 0 0 0 0 0 0 0 1 31 0 0 0 0 0 0 0 0 0

Cha 0 65 6 2 0 0 3 0 0 0 0 65 4 3 0 0 3 1 0 0
Dhin 0 0 65 22 0 0 0 1 0 0 0 0 87 1 0 0 0 0 0 0

Dheem 0 11 32 90 2 0 0 1 0 0 0 1 32 99 4 0 0 0 0 0
Num 0 0 10 0 85 0 1 32 8 0 0 0 7 15 91 0 0 10 13 0

Ta 0 1 0 0 3 71 5 20 7 1 0 3 0 4 2 54 13 5 27 0
Tha 0 0 1 0 1 5 99 15 7 0 2 0 1 0 0 0 119 0 6 0

Tham 0 0 3 0 7 2 7 80 0 0 0 0 9 1 1 2 0 83 2 1
Thi 0 7 3 2 5 31 2 9 148 1 0 9 0 2 6 27 6 3 154 1

Thom 4 8 8 0 0 1 5 2 3 129 0 0 0 0 0 0 3 7 1 149

on the treble membrane. This was done to understand the
strength of coupling between the bass and treble membranes
and if the lack of a bass membrane mode actually reduces
transcription accuracy.

Although it was previously confirmed that each stroke
in isolation has distinct modal activations, the strength and
temporal structure of the activation cannot be assumed to be
the same when the strokes are played within a context. The
strength and shape (to some extent) of a stroke is affected by
the preceding stroke and the tempo of the performance. In
order to capture the invariance in the activations for a given
stroke played in various contexts, Hidden Markov Models
(HMMs) were built. The following procedure was used to au-
tomatically extract features and build HMM models for each
of the strokes:

• The spectrogram for each phrase in the databases was
computed. Using NMF, the activation matrix was es-
timated by projecting the spectrogram along the direc-
tion of the 5 modes (4 modes if the bass mode is not in-
cluded). In order to determine the onset points, the ac-
tivation matrix was summed row wise and peaks were
picked from the resulting row vector. The number of
peaks picked correspond to the number strokes played
within the phrase.

• Once the onset points are known, the original activa-
tion matrix is divided into sub matrices at the onsets.
To prevent activations of succeeding strokes from be-
ing included in the feature vector, only eighty percent
of the frames from onset to onset was used. This sub
matrix can be thought of as a five dimensional feature
vector of varying length, each row representing a di-
mension.

• Feature vectors for each of the ten stroke in the database
were then pooled to build, ten continuous-density Hid-
den Markov Models. After experimenting with Hid-
den Markov Models with various configurations, three-
state, single-mixture HMMs were found to be optimal
to represent each stroke.

5. RESULTS AND ANALYSIS

A four-fold cross-validation was performed with 75% of the
data used for training and 25% for testing. Models were built

using training data as explained in the previous section. Tran-
scription was performed using a 1) four-dimensional feature
vector – only projecting onto treble membrane modes and
2) five-dimensional feature vector – including the bass mem-
brane mode as well.

Table 2: Accuracies in %, S - single side stroke, S+C - Single +
Composites strokes

Instrument
4 modes 5 modes

S S + C S S + C
D# 82.27 72.61 78.26 73.24
E 84.69 74.95 88.40 87.38

Table 2 reports the accuracies for transcription of both in-
struments in the database. Column S indicates an 8-class clas-
sification problem where only the single side strokes are tran-
scribed. Column C indicates a 10-class classification prob-
lem with composite strokes also included. As expected, per-
formance drops when composite strokes are included during
transcription. As can be seen in the confusion matrix in Ta-
ble 1 (compiled by consolidating results for the both instru-
ments) there is substantial confusion between strokes dheem
and dhin and also between num and tham. This is under-
standable given that tham and dhin are composed of num and
dheem respectively. Transcription was possible even without
the bass mode, although including the bass mode did improve
performance. This confirms that there is a coupling effect
between the bass and treble membrane that allows for unique
treble membrane activations when bass membrane strokes are
played.

6. CONCLUSION

We have extended Raman’s analysis of the modes of the mri-
dangam by validating the relationship between strokes and
modes of the instrument. We have also demonstrated that
these modes can be used for transcription. The shortcoming
of this approach is that it requires the modes for each instru-
ment – only strokes without a discernible pitch are invariant
to instrument modes. In future work we anticipate addressing
this issue by applying a transformation to a set of modes to
use them for transcribing strokes of the mridangam tuned to
any key.
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