
APPROXIMATE CONVOLUTION USING PARTITIONED TRUNCATED SINGULAR VALUE
DECOMPOSITION FILTERING

Joshua Atkins, Adam Strauss, Chen Zhang

Beats Electronics, LLC
1601 Cloverfield Blvd. Suite 5000N

Santa Monica, CA 90404

ABSTRACT

In many signal processing applications it is necessary to per-
form large convolutions in real-time. For systems where an
exact convolution is too complex we propose an approxima-
tion using a partitioned truncated singular value decomposi-
tion (PTSVD) filter. In this method the filter is first partitioned
into P segments of length N, the singular value decomposition
is performed on the N× P matrix, and only the largest M sin-
gular values and associated vectors are used to reconstruct the
filter. We show an efficient real-time implementation utilizing
a filter bank and tapped delay line and then further simplify
the structure utilizing an IIR model. Finally, we show an ap-
plication of the method in a simulated reverberation engine
and compare complexity and memory load to state of the art
methods.

Index Terms— Convolution, SVD, Filtering

1. INTRODUCTION

Traditional audio signal processing problems both in telecom-
munications and multimedia often rely on FIR filter models,
e.g. for the room impulse response, that can be very large
and, consequently, difficult to implement in practice. State of
the art techniques for implementing these filters in real-time
systems use the overlap-add or overlap-save methods and par-
titioned frequency domain convolution to reduce complexity
and delay [1, 2, 3, 4]. However, frequency domain techniques
are inherently block based and introduce an amount of sys-
tem latency. Alternative methods have been explored in cer-
tain application domains, such as using a perceptual model
to remove certain time-frequency data from processing [5]
or subband decomposition of the impulse response [6]. For
short impulse responses (on the order of a few 100 FIR coef-
ficients), IIR methods are attractive ways for reducing com-
plexity [7, 8, 9], but these methods fail for longer filters.

In this paper we propose an alternative idea, partitioned
truncated singular value decomposition (PTSVD) filtering,
where the impulse response is partitioned in time, factorized
using the singular value decomposition (SVD), and then re-
constructed using only the M singular vectors corresponding

to the M largest singular values. This filtering method was
initially explored by Mitra et. al. in [10, 11] for the purpose
of creating efficient versions of linear phase bandpass and
lowpass FIR prototypes. The image processing community
also has used the truncated SVD for 2D filter design [12, 13].

In this work we provide additional analysis of the method
shown in [10, 11], extending it to systems that are not guaran-
teed to be linear phase and analyzing the tradeoff in complex-
ity, memory usage, and approximation error. In Section 3 we
propose a filter structure that takes advantage of the truncated
SVD matrices and leads to an efficient implementation. We
then show a further approximation that both reduces the mem-
ory footprint and the computational complexity using an IIR
input and output filter. This filtering method not only has the
benefit of reduced memory and complexity over traditional
methods, it is also delay-less since it does not require a block-
based processing structure.

2. FILTER APPROXIMATION

Let h = [h(0)h(1) . . . h(L − 1)] be an impulse response of
length L. We can construct a N × P matrix H by partitioning
h into P partitions of length N = dL/P e (and zero padding
h if necessary so that it is of length P × N). H can then be
factored using SVD [14] as

H = USVH ,

where (·)H is the conjugate transpose, U and V are the N
× N and P × P singular vectors which form a basis for the
factorization, and S is a N × P matrix containing the singu-
lar values along its main diagonal. We will assume that the
singular values are in descending order.

We can create a Mth order approximate filter, HM , by us-
ing only the M largest singular values in its reconstruction.
This is done by truncating U and V to be of size N ×M and
P ×M, respectively, and taking the M ×M portion of S cor-
responding to the largest singular values. The approximate
filter is then

HM = UMSMVH
M . (1)
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Fig. 1: A typical room impulse response (RT60 = 400ms) and
the PTSVD approximation error.

The error in our Mth order approximation is given as

e(M,N) = ||H−HM ||2,
where || · ||2 is the entry-wise `2-norm. The use of the SVD
guarantees that HM is the rank-M reconstruction of H with
the lowest error, e(M,N).

At this point we have two free parameters, M and N,
that determine the error in our approximation filter. Figure 1
shows the error surface for a typical room impulse response.
This example shows that there exist very low rank approxi-
mations of the original filter that achieve minimal error.

3. EFFICIENT FILTER STRUCTURE

We now will show how the filter HM generated in the last
section can be implemented efficiently for real-time applica-
tions. First, we will rewrite Equation 1 in an expanded form
as

H =


σ0u0

σ1u1

· · ·
σM−1uM−1


T


v00 v10 · · · vP−1
0

v01 v11 · · · vP−1
1

...
...

. . .
...

v0M−1 v1M−1 · · · vP−1
M−1



where σm are the singular values from SM and um are the
length N singular vectors of UM . Recognizing that the P
columns of HM are the time-partitioned version of the filter,
each delayed N samples from the last, we can write a filter
implementation of H as

y(n) =

P−1∑
p=0

M−1∑
m=0

vpmσmuT
mx(n− pN)

where x(n) is the vector of the last N samples of x at time
step n. Figure 2 shows this filter structure, which resembles
a filter-bank analysis section with M length N filters each fol-
lowed by a tapped delay line of length P. Note that this fil-
ter structure achieves a lower complexity implementation of
the FIR filter when a low rank approximation is used, but the
memory usage is increased significantly to store the M delay
lines (each the same length as the original filter). This will
limit system performance in real applications where memory
bandwidth is an issue.

The representation in Figure 2 can be further optimized
by modeling the input and output filters using an IIR approx-
imation [7, 8, 9]. This reduces multiply-add instructions, but
also reduces memory storage significantly since the M length
L delay lines do not need to be stored due to the recursive IIR
structure. Figure 3 shows IIR approximation error in the first
4 um and vm filters for the reverberation filter shown in Fig-
ure 1 using a partition size of N = 53. The IIR approxima-
tions were designed using invfreqz in MATLAB, which uses
an equation-error method for an initial coefficient guess fol-
lowed by an iterative scheme to minimize the solution-error.

4. COMPLEXITY ANALYSIS

The PTSVD filter structure proposed in the last section in its
initial form requires M × (N + P ) multiply-add instructions
per input sample and memory of sizeM × (N +P +L)+N .
A conventional time-domain FIR filter requires L operations
per input sample and 2L variables. Implementing the FIR fil-
ter with partitioned convolution (partition size = N) greatly
reduces complexity: 4α log2(2N) + 4P + 1 instructions per
sample and 4PN variables for overlap-add, where α is a plat-
form specific FFT cost [3].

Figure 4 shows the complexity and memory of the par-
titioned convolution and PTSVD at various rank-M approxi-
mations (N = 128 is assumed). These are shown as a percent
of the complexity and memory of the time-domain FIR im-
plementation, so values above 100% provide no savings. For
nearly all filter lengths the PTSVD approach is lower com-
plexity than a traditional FIR, showing significant benefits
when the filter length becomes large.

It is also clear from this graph that the partitioned con-
volution (dashed line) is more efficient than the PTSVD for
filters less than 10,000 coefficients and M > 2.
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Fig. 2: The structure of the PTSVD filter.
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Fig. 3: The IIR approximation error (dB) in the first 4 um and
vm filters for the reverberation filter shown in Figure 1 using
9th order and 41st order, respectively.

As mentioned in Section 3, the PTSVD structure becomes
very efficient when the input and output filters are modeled
with an IIR approximation. This results in a structure with
2.5M(QU + QV ) instructions and 3.5M(QU + QV ) vari-
ables, where QU and QV are the IIR approximation orders
of the U and V filters (direct-form II transpose using second
order sections is assumed). The complexity and memory of
the PTSVD-IIR are shown in Figure 4 (QU + QV = 60 is
assumed). From this plot it is clear that the method can both
significantly save memory usage as well as complexity for fil-
ters of length 1,000 coefficients or more.

Note that these graphs have fixed N = 128 and QU +
QV = 60 and thus don’t show the full picture. However, they
provide a reasonable view of where the proposed method be-
comes useful in real systems where 128 samples is a common
frame size and QU +QV = 60 is a typical combined IIR ap-
proximation order above which the error becomes negligible.

Furthermore, the PTSVD filter structure also permits
other models which may achieve better performance in cer-
tain contexts, such as using frequency domain processing for
the um or vm filters, using an IIR model for only one section,
or using varying IIR approximation orders for each um or
vm, which are not analyzed in this work.

5. SIMULATION

Since the N , M , QU , and QV are all integer valued, it is pos-
sible to calculate the finite set of (ni,mi, qui, qvi) that meet
a given memory and complexity requirement on a particular
platform. Although the choice of error metric should be ap-
plication dependent (e.g. a spectro-temporal metric for audio
applications), as a simple choice, the point that results in the
lowest `2 approximation error can be chosen.

As an example, the impulse response from Figure 1 is ap-
proximated by the PTSVD-IIR method. A search over possi-
ble N , M , QU , and QV with a maximum complexity of 500
operations per sample and memory usage of 1000 variables
was performed. The resulting filter design used the param-
eters N = 53, M = 4, QU = 9, and QV = 41 result-
ing in a complexity of 500 operations per sample and mem-
ory usage of 700 variables. Figure 5 shows the error for the
PTSVD filter using this approximation and the PTSVD-IIR
filter. The resulting U and V filters and their IIR approxima-
tions are shown in Figure 3. For reference, the time domain
FIR version of this filter requires 20,315 operations per sam-
ple and 40,630 variables and a partitioned convolution with
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Fig. 4: The complexity and memory usage, expressed as per-
cent of time-domain FIR implementation, for the PTSVD and
frequency domain partitioned convolution (dashed). Figures
(a) and (b) are for time domain PTSVD and (c) and (d) are for
PTSVD using an IIR model of the filters (QU +QV = 60).
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Fig. 5: The error in the PTSVD approximation and PTSVD-
IIR approximation for the filter in Figure 1 using N = 53,
M = 4, QU = 9, and QV = 41.

N = 53 requires 1,583 operations per sample and 81,408
variables (assuming α = 1.7). This is a 98% improvement
over regular FIR filtering and 68% improvement over parti-
tioned convolution in addition to the benefit of no block delay
(53 samples).

6. CONCLUSIONS

In this paper we have shown how a conventional convolution
can be approximated with a lower complexity rank-M filter
that is optimal in the `2 sense. An efficient filter structure
for the approximation and an IIR implementation that delivers
low-error results with minimal complexity and memory usage
for real-time systems was presented.

The method opens up many possible avenues for further
study including alternative low-rank approximations (as op-
posed to the SVD), joint spatio-temporal filter design for spa-
tial audio rendering and beamforming (explored in [15]), and
adaptive implementation for applications such as echo can-
celation. Adaptations of the PTSVD filtering structure, such
as varying IIR approximation orders for each um and vm fil-
ter, frequency domain SVD analysis, and combination with
subband methods, will be discussed in a future work.
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