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ABSTRACT

Room acoustic simulation is the process of generating ap-
proximate solutions to either the linearized Euler equations
or the scalar wave equation. As for the continuous equa-
tions, the discrete approximations of both are equivalent. The
vector formulation is less efficient, but it can inform several
unexploited features of the scalar formulation. This paper
first demonstrates the equivalence of the two schemes and ex-
plores how the vector formulation may be integrated into the
more efficient scalar formulation to produce local velocity es-
timates and velocity sources on the pressure grid.

Index Terms— Finite difference methods, computer sim-
ulation, acoustic propagation

1. INTRODUCTION

Linear acoustics can be modeled as a system of first-order
equations involving the acoustic pressure and vector particle
velocity, or it can be equivalently modeled as a single, second-
order equation for the scalar pressure or velocity potential.
The numerical methods developed for both have been used
in the recent literature [1, 2, 3], but the scalar formulation is
simpler to implement and more efficient.

Electric and magnetic fields are both vector fields, so a
scalar formulation in electromagnetics requires either updat-
ing three field components separately, losing efficiency, or
discarding components to maintain efficiency while losing in-
formation. In acoustics, pressure is a scalar, so only one field
must be updated, and the solution is identical to that of the
vector formulation. Furthermore, any apparent effects that
stem from utilization of the velocity field may also be repro-
duced with the pressure-only, scalar formulation. The pur-
pose of this work is to demonstrate the equivalence of the two
schemes, show that the vector formulation is unnecessarily
expensive for linear acoustics, and show how effective veloc-
ity fields may be locally computed to implement sources and
boundary conditions.

1.1. Relation to prior work

Previous work on finite difference methods in acoustics has
focused primarily on using one formulation without dis-
cussing the equivalence or relation of one to the other. Hy-
bridizing the two was suggested in electromagnetics [4], but
the acoustic case is distinct because there is no loss of in-
formation in the scalar formulation. The contribution of this
work includes proof and articulation of the equivalence in the
acoustic case, calculation of velocity, and implementation of
velocity sources on the pressure grid.

2. BACKGROUND

Finite difference time-domain (FDTD) methods can provide
a solution to acoustic wave equations in geometries and with
boundary conditions that resist analytical solution. In its first
introduction to room acoustics, the Yee algorithm [5] was
adapted to the solve the conservation of mass and momentum
equations of linear acoustics [6]:

ρ0
∂v
∂t

+∇p = 0, (1)

∂p

∂t
+ ρ0c

2∇ · v = 0. (2)

Although many other methods have been introduced since,
the Yee algorithm is still reported in recent literature [2]. The
second-order wave equation governs only one scalar variable,
most often pressure, but it is also satisfied by the velocity po-
tential, for example. Describing the acoustic pressure, p, the
scalar wave equation is

∂2p

∂t2
− c2∇2p = 0. (3)

To solve these equations numerically, the solution is typ-
ically calculated on a uniformly-discretized grid for simplic-
ity, accuracy, and efficiency, with grid spacing ∆x. The pres-
sure grid function will be denoted p(j∆x, k∆x, l∆x, n∆t) ≡
pnj,k,l, where ∆t is the temporal discretization period. Spatial
indices will be denoted by subscripts, and temporal indices
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will be denoted by superscripts. Difference operators, δ, may
be compactly written such that

δ2x p
n
j,k,l = pnj+1,k,l − pnj,k,l + pnj−1,k,l. (4)

The superscript on the operator indicates the order of the dif-
ferencing, and the subscript indicates the variable being nu-
merically differentiated, so the example in Equation (4) is
a second difference in the x-dimension. The notation for
forward and backward (first) differences will be denoted by
an additional +/−, respectively. For example, δy+ pnj,k,l =
pnj,k+1,l − pnj,k,l and δy− pnj,k,l = pnj,k,l − pnj,k−1,l. For no-
tational clarity, let the Cartesian components of the vector-
valued particle velocity, v, be u, v, w. Then, the discrete ap-
proximations of Equations (1) and (2) in time-stepping form
are [6]

u
n+1/2
j+1/2,k,l = u

n−1/2
j+1/2,k,l −

∆t

ρ0∆x
δx+p

n
j,k,l, (5)

v
n+1/2
j,k+1/2,l = v

n−1/2
j,k+1/2,l −

∆t

ρ0∆x
δy+p

n
j,k,l, (6)

w
n+1/2
j,k,l+1/2 = w

n−1/2
j,k,l+1/2 −

∆t

ρ0∆x
δz+p

n
j,k,l, (7)

pn+1
j,k,l = pnj,k,l −

ρ0c
2∆t

∆x

(
δx−u

n+1/2
j+1/2,k,l

+δy−v
n+1/2
j,k+1/2,l + δz−w

n+1/2
j,k,l+1/2

)
. (8)

This is known as the Yee algorithm after the analogous
scheme in electromagnetics [5]. The canonical finite dif-
ference scheme for the scalar wave equation (3)—below
referred to as the standard rectilinear scheme (SRS)—uses
centered, second differences in space and time on a single
pressure grid:

pn+1
j,k,l = 2pnj,k,l − pn−1j,k,l + λ2

(
δ2x + δ2y + δ2z

)
pnj,k,l , (9)

where λ = c∆t/∆x defines numerical characteristics which
must contain the analytical characteristics for stability [7].
This scheme was proposed long before the advent of com-
puters [7] and much later in room acoustics [8]. The solution
in both cases converges to the true solution proportionally to
∆x2 and ∆t2. The Yee scheme maintains its second-order
accuracy with only first-order differences by staggering the
pressure and velocity grids. The staggered grid also avoids
the necessity of inverting a linear system for each update.
Although, the Yee algorithm cleverly eludes these potential
problems, its solutions are identical to those of the more
straightforward scalar wave equation solvers. The following
section demonstrates the equivalence of the two schemes.

3. EQUIVALENCE AND COMPARISON

The equivalence of the two schemes could be motivated by
the recovery of the acoustic wave equation from the Euler

equations. To do so requires that the order of mixed partial
derivatives may be exchanged, and this is also true in the dis-
crete case. However, this is a relatively weak assumption be-
cause the same condition must hold in order for the discrete
approximation to be consistent in the first place [9]. Operat-
ing on Equation (8) with δt− yields

δt−p
n+1
j,k,l = δt−p

n
j,k,l −

ρ0c
2∆t

∆x

(
δt−δx−u

n+1/2
j+1/2,k,l

+δt−δy−v
n+1/2
j,k+1/2,l + δt−δz−w

n+1/2
j,k,l+1/2

)
. (10)

Similarly, operating on Equations (5), (6), and (7) with
δx−, δy−, and δz− respectively results in

δx−δt−u
n+1/2
j+1/2,k,l = − ∆t

ρ0∆x
δx−δx+ p

n
j,k,l, (11)

δy−δt−v
n+1/2
j,k+1/2,l = − ∆t

ρ0∆x
δy−δy+ p

n
j,k,l, (12)

δz−δt−w
n+1/2
j,k,l+1/2 = − ∆t

ρ0∆x
δz−δz+ p

n
j,k,l. (13)

Now, if all grid functions are continuous to second-order,
the sequence of mixed difference operators may be reversed.
Then, the velocity components may be eliminated, leaving
the standard rectilinear scheme:

δ2t p
n
j,k,l = λ2

(
δ2x + δ2y + δ2z

)
pnj,k,l . (14)

The analogous continuous result may be derived identically
by replacing the difference operators on the Yee update equa-
tions with differential operators on the linearized Euler equa-
tions. The truncation error can also be carried through the
calculations to truly show that the schemes are identical; how-
ever, it is left out here for brevity and clarity of presentation.
It is also possible to observe that the continuous equations and
discrete approximations for both sets of equations are equiva-
lent, so the approximation error must also be equivalent—all
again relying on the assumption of sufficient smoothness.

3.1. Computational Requirements

Acoustic fields are inherently simpler than electromagnetic
fields, so the same results regarding computational effort [4]
do not apply. The computational requirements for the acoustic
case are summarized in Table 1. The first two rows indicate
the number of multiplications and additions required to ad-
vance the pressure at a node one full time step. Since the Yee
algorithm only uses first differences, it is possible for values
at each node to be overwritten with updated values. For the
scalar wave equation second temporal differences are neces-
sary, forcing storage of at least one intermediate value. The
memory storage requirements are indicated in Table 1 by val-
ues per node. The Yee algorithm requires storage of more
velocity components as dimension is increased, but the wave
equation scheme requires two scalar pressure values per node,
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regardless of dimension. For this reason, a three-dimensional
wave equation simulation should require half as much mem-
ory as a Yee simulation.

Table 1. Computational requirements for the Yee and stan-
dard rectilinear methods. Values per node are the number of
values that must be stored in memory at each grid point in the
mesh.

Yee 1D SRS 1D Yee 3D SRS 3D

Multiplications 2 2 4 2
Additions 4 3 12 7

Values per Node 2 2 4 2

The standard rectilinear scheme not only requires less
memory but also fewer operations. In three dimensions the
operation count for Yee is nearly doubled. Given that the
results are identical, the extra computation and code com-
plexity required by the Yee scheme makes it nearly always
less desirable.

These results have only been presented for the basic forms
of each scheme. Higher-order [9] or interpolated approxima-
tions [10, 1, 11] can be generated for both types of scheme,
which by allowing coarser discretization, reduce the overall
computational load. However, the properties described above
would still apply to analogous interpolated variants. In par-
ticular, relative memory requirements will remain the same,
even if the overall memory load is reduced.

3.2. Boundary Conditions

The construction of general, frequency-dependent boundary
conditions, an important aspect of any room acoustic finite
difference simulation, is analogous in both cases as well.
The Yee formulation requires a convolution of the impedance
with velocity, and the formulation for the standard rectilinear
scheme requires a convolution with the pressure gradient [1].
In both cases, the update equation depends on an unknown
point, lying outside the domain. The boundary condition is
applied so that there are as many equations as unknowns, and
the system of equations has a unique solution.

One small difference is that in the Yee scheme, pressure
and velocity are not collocated on the boundary, so one vari-
able must be interpolated to apply the boundary condition. In
previous work [6], a one-sided difference is used to achieve
this, reducing the accuracy of the boundary approximation to
first-order. However, one could in principle use centered ap-
proximations and a ghost point [1] which is eliminated by the
boundary condition, maintaining second-order accuracy. The
order of accuracy is not necessarily tied to the scheme, and

given comparable implementations, the result should not be
substantially different.

4. INTEGRATING VECTOR AND SCALAR UPDATES

This section demonstrates several ways that the equivalence
of the two schemes may be exploited in practice. First, to mo-
tivate the subsequent applications, a local estimate of velocity
on the pressure grid is developed. Then, the two schemes are
implemented side-by-side on a single domain to further re-
inforce equivalence and show that the Yee scheme could be
applied locally. Then, the Yee update is used to generate an
effective velocity source on the pressure grid. The purpose of
this section and this work is to show that anything that can
be done with the vector update can be done equivalently and
nearly always more efficiently with the scalar update.

The essential conversion is usually a substitution of the
history of pressure gradient for velocity. Integrating both
sides of (1), the velocity at a point x̂ = ̂∆x is

u(x̂, t) =

∫ t

−∞

∂u

∂τ
dτ

∣∣∣∣
x̂

= − 1

ρ0

∫ t

−∞

∂p

∂x
dτ

∣∣∣∣
x̂

. (15)

Approximating the integral with a sum and the spatial deriva-
tive with a centered difference, the velocity at grid point (̂, n̂)
is

un̂̂ = − ∆t

ρ02∆x

n̂∑
n=−∞

(
pn̂+1 − pn̂−1

)
. (16)

If the pressure gradient terms at time step n̂ are collected, it
may be written recursively, identical in form to Equation (5):

un̂̂ = un̂−1̂ − ∆t

ρ02∆x

(
pn̂̂+1 − pn̂̂−1

)
. (17)

In other words, the velocity, whether calculated on the pres-
sure grid or a staggered grid, is nothing more than a cumu-
lative sum of the pressure gradient. This relationship may
be used to update part of the domain with the vector update,
compute the velocity locally in a pressure simulation, or real-
ize velocity sources in the scalar pressure simulation.

4.1. Combined scalar-vector simulation

To show that the two simulations may be seamlessly inte-
grated, a simple three-dimensional simulation is constructed
where the two updates are applied on either side of an in-
terface. The pressure grid for both is kept constant, and ve-
locity nodes for the Yee portion of the grid are staggered at
half-integer steps. Figure 1 shows three snapshots of two-
dimensional slices of the simulation. The domain, x, y, z ∈
[0, 1] is uniformly discretized with 101 points in each dimen-
sion, and the interface is located at x = 0.5. Homogeneous
Neumann conditions are assigned at the boundaries, and a
transient source is introduced at (x, y, z) = (1/3, 3/8, 1/2),
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which lasts 40 time steps. The Courant stability factor set to
1/
√

3, and snapshots are taken at time steps 60, 90, and 150.
The pulse passes continuously through the interface without
reflection, reinforcing that both the scheme and truncation er-
ror are equivalent.

Fig. 1. Snapshots of two-dimensional slices from a three-
dimensional wave simulation using both scalar wave equation
and Yee updates. The dashed line indicates the interface be-
tween the two schemes.

4.2. Velocity Sources

Informed by the Yee update or a local velocity estimate, effec-
tive velocity sources may also be realized on the pressure grid.
To demonstrate, let the excitation functions at two adjacent
pressure nodes be p(j, k, l) = s(n∆t) ≡ sn, p(j + 1, k, l) =
−sn. Using the staggered grid update, (5), this is equivalent
to a velocity source

u
n̂+1/2
j+1/2,k,l = − ∆t

ρ0∆x

n̂∑
n=0

sn. (18)

It is also possible to invert this relation to find the pressures
associated with the velocity source function. Essentially, the
velocity source should be proportional to the integral of the
dipole pressure source function, or the pressure source func-
tion should be proportional to the derivative of the velocity
source function. Since both schemes may be seamlessly inte-
grated and their updates exchanged, specifying adjacent pres-
sure sources induces a velocity source through the implied
Yee update.

To demonstrate velocity sources in the scalar wave
equation scheme, three-dimensional Yee and SRS simu-
lations are repeated with a velocity source in the center
of a cubic room. The pressure dipole source function is
sn = (tn−m∆t/2) sin6 (kctn), where m = 40 is the length
of the pulse in samples and k = π/(mc∆t). The veloc-
ity source is then given by (18). The speed of sound, c, is
normalized to 1 m/s, and there are 81 nodes in each of the co-
ordinate directions. Each simulation is run for 70 time steps,
and one-dimensional slices, through the source location, of
the three-dimensional solutions are shown in Figure 2. The
slight deviation is due to quadrature error in (18).
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Fig. 2. One-dimensional slices of three-dimensional solutions
for a pressure dipole and velocity source to show that velocity
sources can be accurately realized on a pressure grid.

5. CONCLUSIONS

Both vector and scalar schemes for solving the linear acoustic
wave equation result in identical solutions, but the scalar for-
mulation is in general more efficient. To show that the vector
formulation is redundant for room acoustic simulation, a local
estimate of velocity and velocity sources on the pressure grid,
are developed. Although both schemes are still used [1, 2],
the methods based on the scalar wave equation are simpler to
implement, require less memory, require fewer operations per
update, and most importantly, produce identical solutions.
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