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ABSTRACT

Finite-difference time domain methods are commonly used
for acoustics modeling of enclosed geometries. For large
spaces and high frequencies, the computational requirements
become prohibitive in practical use. Thus, geometric acous-
tics algorithms are used in those cases. The results of these
two classes of algorithm can be combined to model the full
acoustic response. To allow direct mixing of the results, the
source strengths should be calibrated. This paper derives
calibration factors for various finite-difference time domain
methods. It is shown that the modelled acoustics responses
can then be easily combined to synthesise wide-band hybrid
responses.

Index Terms— Acoustic emission, Acoustic propaga-
tion, Acoustic signal processing, Room acoustics, Finite-
difference time domain methods

1. INTRODUCTION

When the goal is to model room acoustics, there are several
methods available. In some algorithms, the wave equation
is solved numerically. This can be achieved by discretizing
the room boundaries, yielding a boundary element method
(BEM), or discretizing the room volume, yielding a finite
element method (FEM). In these cases the discretization is
usually only spatial and the solution is obtained in the fre-
quency domain, although exceptions exist. A spatio-temporal
approximation of the wave equation may be obtained by rep-
resenting the continuous propagation medium with a discrete
set of points, called nodes. This approach leads to finite dif-
ference time domain (FDTD) methods where the processing
is performed in the time domain and the calculations are rela-
tively simple compared to BEMs or FEMs.

Often the computing time, available computing power and
memory are limiting the use of the aforementioned methods
to low frequencies. Thus, geometric acoustics modeling al-
gorithms are most practical at higher frequencies. They as-
sume that sound travels along straight paths or rays. While
this is not physically accurate, the approximation is often suf-
ficiently close to the reality at higher frequencies.

If the contradicting requirements of physical accuracy and
efficient computing are combined, it is reasonable to use a hy-
brid approach where the wave-based methods (BEM / FEM /
FDTD) are used at low frequencies and the geometric meth-
ods at high frequencies. In the end, the modeling results are
combined to obtain the full-band impulse responses in the
given room.

Since the geometric modeling is most often computed in
the time domain, it is simplest to also use time-domain model-
ing at the low frequencies. Then FDTD methods are the most
obvious choice. Of course, it is possible to use frequency-
domain methods and then use the Fourier transform to switch
the responses to the same domain. But this paper concentrates
on how to combine the FDTD modeling results with the geo-
metric modeling results. The calibration coefficients are also
required when the responses of different FDTD schemes are
to be compared directly.

1.1. Previous Work

Kowalczyk and van Walstijn have listed seven different FDTD
schemes that could be presented in one unified framework [1].
Their classification of the FDTD methods is used in this pa-
per. On the other hand, Siltanen et al. generalize the geo-
metric methods under one equation [2]. Thus, the choice of
the exact geometric algorithm is not critical as they should
ultimately produce the same results.

There have been several implementations combining two
geometric modelling approaches [5],[6],[7]. Also, the idea
of splitting the modelling task between the wave-based meth-
ods and the geometric methods has already been suggested
in, e.g. [8], and more recently in [9]. Only recently, has there
been complete implementations combining two approaches
[10],[11],[12].

The calibration parameter defined in this paper is applica-
ble to previously presented hybrid acoustic models. Murphy
et al. presented a hybrid acoustic model based on a combina-
tion of ray-tracing and the Digital Waveguide Mesh (DWM),
which is closely related to FDTD method [10]. A 3-D and
2-D DWM was employed for synthesizing the early and late
parts of the impulse response respectively. A more recent hy-
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brid model presented by Southern et al. uses a combination
of FDTD, Beam-Tracing and the Acoustic Radiance Trans-
fer methods for impulse response synthesis [12]. In addition
that work presented three methods for performing the calibra-
tion discussed in this work. Only one of the methods had the
acoustically physical foundation that is desired for accurate
hybrid impulse response synthesis. The main disadvantage
of that approach was that the calibration operation required
a direct line of sight between source/receiver and the accu-
racy was dependent on the ability to window the direct sound.
These restrictions are alleviated using the method presented
in this paper.

2. SOURCE CALIBRATION

For geometic modeling techniques, it is trivial to set the omni-
directional sound source strength so that it produces intensity
I = 1W/m2 at some distance R. Given a sound source with
strength P ,

I =
P

4πR2
. (1)

Or if the calculations are done with pressures:

p =

√
PZ

4πR2
=

√
PZ

4π
/R, (2)

whereZ is the acoustic impedance of the medium. Obviously,
there is 1/R-dependence in pressures. Here, both power and
pressure are defined in the root mean square sense.

On the other hand, in FDTD simulations, sound is excited
from the source and propagated in a grid. Pressure values are
stored at each node and those values are updated in discrete
time steps. The general update equation is shown in Eq 3 [1],
where pnl,m,i is the update variable at node position {l,m, i}
in the 3-dimensional grid, and n is the time index. Constants
d1, d2, d3, and d4 depend on the scheme and are listed in
Table 1.

Without loss of generality, a delta-like source signal is
considered. The grid cell corresponding to the sound source
is set to unity at time index n = 0 and then the sound is
propagated in the grid by using the update equations of that
particular FDTD scheme.

This FDTD sound source initialization has no obvious
physical interpretation. In the following, the sound source
strength in FDTD techniques is adjusted so that it matches
the geometric sound source strength.

All FDTD methods use a grid with some inter-nodal spac-
ing X . The grid spacing is related to the sampling rate fs and
the Courant number λ that depends on the chosen scheme [1]:

X =
c

fsλ
. (4)

It is possible to calculate the geometric sound source pressure
level at distance X from the source. Obviously,

p =

√
PZ

4π
/X. (5)

On the other hand, many FDTD techniques calculate the
sound pressure at that distance for the nodes next to the
source. However, only part of the frequency range is valid,
and in some FDTD schemes the nodes next to the source
remain zero. Thus, the FDTD node values cannot be directly
compared to the geometric pressure values at the correspond-
ing positions.

The FDTD signal must be low-pass filtered to make the
comparison meaningful. In this comparison, the whole valid
frequency range of the FDTD schemes is not required. Ulti-
mately, it is sufficient to compare the DC level of the FDTD
results to the geometric pressure levels. This is the same as
the total accumulated value of the FDTD signal at the receiver
point, i.e.

pDC =

∞∑
n=1

pnl,m,i, (6)

where pnl,m,i is the observed pressure value at receiver node
l,m, i at time sample n when using the notation in [1]. Even
when the initial source excitation is the same, pDC will have
different values depending on the scheme.

It is difficult to derive an analytical expression for the
received signal, and so far it has been done only in the 2-
dimensional case [3]. Thus, simulations are performed to de-
termine the ratio between the source excitation level and the
DC level of the signal at the receiver position, i.e.

A =
pDC

pinit
. (7)

Most often pinit = 1. Table 1 lists these ratios, hereafter
called calibration coefficients. In the simulations, each FDTD
scheme is run for a source in free space with a sufficiently
large grid to avoid any reflections. The pressure values at the
receiver position are accumulated as in Eq. 6. The receiver
positions are one node away from the source in all but the oc-
tahaedral and cubic close-packed schemes, where those nodes
remain zero throughout the simulation. In those cases, the re-
ceivers were two nodes away from the source. In the end, the
coefficients are scaled back as if the source was just one node
away from the source.

The total calibration factor is

η =
Rλfs
Ac

=
R

AX
, (8)

where R is the distance at which the geometric sound source
has intensity 1W/m2, λ is the Courant number (see Table˜1),
fs is the sampling rate, c is the speed of sound, and A is the
calibration coefficient.

3. EXAMPLES

It is well-known that geometric methods do not capture the
wave phenomena such as diffraction. Thus, to avoid extra
considerations related to the validity of the geometric results,
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pn+1
l,m,i = d1(p

n
l+1,m,i + pnl−1,m,i + pnl,m+1,i + pnl,m−1,i + pnl,m,i+1 + pnl,m,i−1)

+d2(p
n
l+1,m+1,i + pnl+1,m−1,i + pnl+1,m,i+1 + pnl+1,m,i−1 + pnl,m+1,i+1 + pnl,m+1,i−1

+pnl,m−1,i+1 + pnl,m−1,i−1 + pnl−1,m+1,i + pnl−1,m−1,i + pnl−1,m,i+1 + pnl−1,m,i−1)

+d3(p
n
l+1,m+1,i+1 + pnl+1,m+1,i−1 + pnl+1,m−1,i+1 + pnl+1,m−1,i−1

+pnl−1,m+1,i+1 + pnl−1,m+1,i−1 + pnl−1,m−1,i+1 + pnl−1,m−1,i−1) + d4p
n
l,m,i − pn−1l,m,i. (3)

Table 1. Calibration coefficients for different 3-D FDTD
schemes extended from [1].

Std. Octa- Cubic Interp. Interp. Isotropic Interp.
Rect. hedral Close- DWM Isotropic 2 Wideb.

Packed

λ
√

1
3

1 1
√

1
3

√
3
4

√
3
4

1
d1

1
3

0 0 0.1205 1
4

15
48

1
4

d2 0 0 1
4

0.0386 1
8

3
32

1
8

d3 0 1
4

0 0.0146 0 1
64

1
16

d4 0 0 -1 0.6968 -1 − 9
8

− 3
2

A 0.3405 0.2090 0.1708 0.2399 0.2372 0.2544 0.2089

a simple ”shoebox” model is chosen for this initial examina-
tion. In this case, there are no diffracting edges and the solu-
tion is exact, assuming the walls are rigid, and the responses
are easy to compute with explicit formulas [4]. The dimen-
sions of the room are 5.56 m x 3.97 m x 2.81 m. There are 25
source-receiver-pairs (5 sources and 5 receivers). Only one
typical pair is shown here, where the source position is (2.09,
2.12, 2.12) m and the receiver position (2.09, 3.08, 0.96) m. A
low frequency modal analysis is performed three times where
the reflection coefficients of all surfaces are set to 0.8, 0.9,
and 0.999 respectively.

Figure 1 compares FDTD results with the geometric mod-
eling results. The FDTD scheme used in this case is the stan-
dard rectilinear scheme. The geometric results are produced
with image sources which are trivial to calculate in the case of
this model. It can be seen that after the calibration, the levels
of the resulting impulse responses are very close to each other.
Most of the differences can be attributed to the differences in
the boundary model.

4. CONCLUSIONS

It is suitable to model low frequencies with a FDTD algo-
rithm, because all wave phenomena are properly modelled.
At higher frequencies, the grid size becomes too large for
practical applications. In addition, many FDTD schemes suf-
fer from dispersion error which becomes more prominent at
long distances or, equivalently, with dense grids required for
high frequency modeling. Thus, it is advisable to use faster
methods that do not cause dispersion at high frequencies.
Geometric methods fulfill these requirements. On the other

hand, they do not model all the wavephenomena that FDTD
algorithms model. It is reasonable to conclude that hybrid
modeling can produce more accurate results in a given time
with limited computing resources.

To combine the results produced with different algo-
rithms, the source signals must be calibrated to the same
level. This is achieved by recording the signal at the receiver
position right next to the source and using the DC level of
that signal to adjust it accordingly. This simulation is required
only once per FDTD scheme, not once per room geometry.
Thus, it is useful to have the simulation results available as
numbers as in Table 1. Then, it is sufficient to plug the ap-
propriate number into Eq. 8, and scale the FDTD results with
the calibration factor.

Finally, it is also worth noting that the calibration parame-
ter is necessary when comparing the results of different FDTD
schemes directly.
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(a) Without calibration applied
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(b) With calibration applied
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Fig. 1. Comparison of modal responses as produced with a FDTD algorithm (dotted) and geometric acoustics modeling (solid).
The comparison is made for three different reflection coefficients,Rc (0.8, 0.9, or 0.999) without and with the calibration applied
in (a) and (b) respectively. Vertical lines indicate the expected analytical modal resonances of the cuboid room dimensions.
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